Abstract
In this paper we propose a new approach to solve some challenges in the simultaneous localization and mapping (SLAM) problem based on the relative map filter (RMF). This method assumes that the relative distances between the landmarks of relative map are estimated fully independently. This considerably reduces the computational complexity to average number of landmarks observed in each scan. To solve the ambiguity that may happen in finding the absolute locations of robot and landmarks, we have proposed two separate methods, the lowest position error (LPE) and minimum variance position estimator (MVPE). Another challenge in RMF is data association problem where we also propose an algorithm which works by using motion sensors without engaging in their cumulative error. To apply these methods, we switch successively between the absolute and relative positions of landmarks. Having a sufficient number of landmarks in the environment, our algorithm estimates the positions of robot and landmarks without using motion sensors and kinematics of robot. Motion sensors are only used for data association. The empirical studies on the proposed RMF-SLAM algorithm with the LPE or MVPE methods show a better accuracy in localization of robot and landmarks in comparison with the absolute map filter SLAM.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bailey T (2004) Matlab simulations of EKF-SLAM, FastSLAM 1.0, FastSLAM 2.0 and UKF-SLAM. In: http://www-personal.acfr.usyd.edu.au/tbailey/
Bailey T, Nieto J, Guivant J, Stevens M, Nebot E (2006) Consistency of the EKF-SLAM algorithm. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3562–3568, doi:10.1109/IROS.2006.281644
Carlone L, Du J, Kaouk Ng M, Bona B, Indri M (2014) Active SLAM and exploration with particle filters using Kullback–Leibler divergence. J Intell Robot Syst 75(2):291–311. doi:10.1007/s10846-013-9981-9
Castellanos JA, Martinez-Cantin R, Tard JD, Neira J (2007) Robocentric map joining: improving the consistency of EKF-SLAM. Robot Auton Syst 55(1):21–29. doi:10.1016/j.robot.2006.06.005
Castellanos JA, TD Neira J (2004) Limits to the consistency of EKF-based slam. In: 5th IFAC symposium on intelligent autonomous vehicles, IAV’04, Lisbon, Portugal
Csorba M (1997) Simultaneous localisation and map building. Ph.D. thesis
Davey SJ (2007) Simultaneous localization and map building using the probabilistic multi-hypothesis tracker. IEEE Trans Robot 23(2):271–280. doi:10.1109/TRO.2007.892235
Dissanayake MWMG, Newman P, Clark S, Durrant-Whyte HF, Csorba M (2001) A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans Robot Autom 17(3):229–241. doi:10.1109/70.938381
Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part I. IEEE Robot Autom Mag 13(2):99–110
Eustice R, Walter M, Leonard J (2005) Sparse extended information filters: insights into sparsification. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3281–3288. doi:10.1109/IROS.2005.1545053
Eustice RM, Singh H, Leonard JJ (2006) Exactly sparse delayed-state filters for view-based SLAM. IEEE Trans Robot 22(6):1100–1114. doi:10.1109/TRO.2006.886264
Grisetti G, Kummerle R, Stachniss C, Burgard W (2010) A tutorial on graph-based SLAM. IEEE Intell Transp Syst Mag 2(4):31–43. doi:10.1109/MITS.2010.939925
Havangi R, Taghirad HD, Nekoui MA, Teshnehlab M (2014) A square root unscented FastSLAM with improved proposal distribution and resampling. IEEE Trans Ind Electron 61(5):2334–2345. doi:10.1109/TIE.2013.2270211
Ho TS, Fai YC, Ming ESL (2015) Simultaneous localization and mapping survey based on filtering techniques. In: Control conference (ASCC), 10th Asian, pp 1–6. doi:10.1109/ASCC.2015.7244836
Huang GP, Mourikis AI, Roumeliotis SI (2010) Observability-based rules for designing consistent EKF SLAM estimators. Int J Robot Res 29(5):502–528. doi:10.1177/0278364909353640
Huang S, Wang Z, Dissanayake G (2008) Sparse local submap joining filter for building large-scale maps. IEEE Trans Robot 24(5):1121–1130. doi:10.1109/TRO.2008.2003259
Julier SJ, Uhlmann JK (2001) A counter example to the theory of simultaneous localization and map building. In: Proceedings of IEEE international conference on robotics and automation (ICRA), vol 4, pp 4238–4243. doi:10.1109/ROBOT.2001.933280
Kaess M, Ranganathan A, Dellaert F (2008) iSAM: incremental smoothing and mapping. IEEE Trans Robot 24(6):1365–1378. doi:10.1109/TRO.2008.2006706
Key S (1993) Fundamentals of statistical signal processing, volume I: estimation theory, vol 1. Prentice Hall, Englewood Cliffs
Kim C, Sakthivel R, Chung WK (2008) Unscented FastSLAM: a robust and efficient solution to the SLAM problem. IEEE Trans Robot 24(4):808–820. doi:10.1109/TRO.2008.924946
Kim C, Kim H, Chung WK (2011) Exactly Rao–Blackwellized unscented particle filters for SLAM. In: IEEE international conference on robotics and automation (ICRA), pp 3589–3594. doi:10.1109/ICRA.2011.5980086
Kmmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) G2o: A general framework for graph optimization. In: IEEE international conference on robotics and automation (ICRA), pp 3607–3613. doi:10.1109/ICRA.2011.5979949
Korkmaz Mehmet, Ylmaz Nihat, Durdu Akif (2016) Comparison of the slam algorithms: Hangar experiments. MATEC Web of Conferences. doi:10.1051/matecconf/20164203009
Kurt-Yavuz Z, Yavuz S (2012) A comparison of EKF, UKF, FastSLAM2.0, and UKF-based FastSLAM algorithms. doi:10.1109/INES.2012.6249866
Liu W WT, Y Z (2014) A relative map approach for efficient EKF-SLAM. In: Guidance, navigation and control conference (CGNCC), IEEE Chinese, pp 2646–2650. doi:10.1109/CGNCC.2014.7007586
Martinelli A, Tomatis N, Siegwart R (2004) Open challenges in slam: an optimal solution based on shift and rotation invariants. In: Proceedings of IEEE international conference on robotics and automation (ICRA ’04), vol 2, pp 1327–1332. doi:10.1109/ROBOT.2004.1308008
Martinelli A, Nguyen V, Tomatis N, Siegwart R (2007) A relative map approach to SLAM based on shift and rotation invariants. Robot Auton Syst 55(1):50–61
Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) Fastslam: A factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI national conference on artificial intelligence. AAAI, Edmonton, Alberta, Canada, pp 593–598
Neira J, Tardos JD (2001) Data association in stochastic mapping using the joint compatibility test. IEEE Trans Robot Autom 17(6):890–897. doi:10.1109/70.976019
Newman PM (1999) On the structure and solution of the simultaneous localisation and map building problem. Ph.D thesis
Newman PM, Durrant-Whyte HF (2001) Geometric projection filter: an efficient solution to the slam problem. In: Proceedings of SPIE 4571, sensor fusion and decentralized control in robotic systems IV, Boston, MA , USA, vol 22, pp 22–33
Nguyen V, Martinelli A, Siegwart R (2006) Improving the consistency of relative map. In: International conference on intelligent robots and systems, IEEE/RSJ, Beijing, China, pp 3556–3561. doi:10.1109/IROS.2006.281643
Prez J, Caballero F, Merino L (2015) Enhanced Monte Carlo localization with visual place recognition for robust robot localization. J Intell Robot Syst. doi:10.1007/s10846-015-0198-y
Sen Z, Lihua X, Adams M (2004) An efficient data association approach to simultaneous localization and map building. In: Proceedings of IEEE international conference on robotics and automation (ICRA ’04), vol 1, pp 854–859. doi:10.1109/ROBOT.2004.1307256
Shu Yun C, Han Pang H (2006) Relative-absolute map filter for simultaneous localization and mapping. In: International conference on intelligent robots and systems, IEEE/RSJ, Beijing, China, pp 436–441. doi:10.1109/IROS.2006.282023
Shu Yun C, Han Pang H (2007) Relative-absolute information for simultaneous localization and mapping. In: IEEE international conference on robotics and biomimetics, ROBIO, Sanya, China, pp 1641–1646, doi:10.1109/ROBIO.2007.4522411
Siegwart R, Nourbakhsh R (2004) Introduction to autonomous mobile robots, 3rd edn. MIT press, Cambridge
Thrun S, Liu Y, Koller D, Ng AY, Ghahramani Z, Durrant-Whyte H (2004) Simultaneous localization and mapping with sparse extended information filters. Int J Robot Res 23(7–8):693–716. doi:10.1177/0278364904045479
Walter MR, Eustice RM, Leonard JJ (2007) Exactly sparse extended information filters for feature-based SLAM. Int J Robot Res 26(4):335–359. doi:10.1177/0278364906075026
Yadkuri F, Khosrowjerdi M (2015) Methods for improving the linearization problem of extended Kalman filter. J Intell Robot Syst 78(3–4):485–497. doi:10.1007/s10846-014-0089-7
Zhang S, Xie L, Adams M (2005) An efficient data association approach to simultaneous localization and map building. Int J Robot Res 24(1):49–60. doi:10.1177/0278364904049251
Zhao L, Huang S, Dissanayake G (2013) Linear slam: A linear solution to the feature-based and pose graph SLAM based on submap joining. In: IEEE/RSJ international conference on intelligent robots and systems, pp 24–30. doi:10.1109/IROS.2013.6696327
Zhou W, Zhao C, Guo J (2009) The study of improving Kalman filters family for nonlinear SLAM. J Intell Robot Syst 56(5):543–564. doi:10.1007/s10846-009-9327-9
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bahreinian, S.F., Palhang, M. & Taban, M.R. A new approach to solve SLAM challenges by relative map filter. Intel Serv Robotics 10, 271–286 (2017). https://doi.org/10.1007/s11370-017-0226-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11370-017-0226-9