A new approach to solve SLAM challenges by relative map filter | Intelligent Service Robotics Skip to main content
Log in

A new approach to solve SLAM challenges by relative map filter

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

In this paper we propose a new approach to solve some challenges in the simultaneous localization and mapping (SLAM) problem based on the relative map filter (RMF). This method assumes that the relative distances between the landmarks of relative map are estimated fully independently. This considerably reduces the computational complexity to average number of landmarks observed in each scan. To solve the ambiguity that may happen in finding the absolute locations of robot and landmarks, we have proposed two separate methods, the lowest position error (LPE) and minimum variance position estimator (MVPE). Another challenge in RMF is data association problem where we also propose an algorithm which works by using motion sensors without engaging in their cumulative error. To apply these methods, we switch successively between the absolute and relative positions of landmarks. Having a sufficient number of landmarks in the environment, our algorithm estimates the positions of robot and landmarks without using motion sensors and kinematics of robot. Motion sensors are only used for data association. The empirical studies on the proposed RMF-SLAM algorithm with the LPE or MVPE methods show a better accuracy in localization of robot and landmarks in comparison with the absolute map filter SLAM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. http://www-personal.acfr.usyd.edu.au/nebot/victoria_park.htm.

  2. http://www-personal.acfr.usyd.edu.au/nebot/experimental_data_ute.htm.

  3. https://svn.openslam.org/data/svn/ufastslam.

References

  1. Bailey T (2004) Matlab simulations of EKF-SLAM, FastSLAM 1.0, FastSLAM 2.0 and UKF-SLAM. In: http://www-personal.acfr.usyd.edu.au/tbailey/

  2. Bailey T, Nieto J, Guivant J, Stevens M, Nebot E (2006) Consistency of the EKF-SLAM algorithm. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3562–3568, doi:10.1109/IROS.2006.281644

  3. Carlone L, Du J, Kaouk Ng M, Bona B, Indri M (2014) Active SLAM and exploration with particle filters using Kullback–Leibler divergence. J Intell Robot Syst 75(2):291–311. doi:10.1007/s10846-013-9981-9

    Article  Google Scholar 

  4. Castellanos JA, Martinez-Cantin R, Tard JD, Neira J (2007) Robocentric map joining: improving the consistency of EKF-SLAM. Robot Auton Syst 55(1):21–29. doi:10.1016/j.robot.2006.06.005

    Article  Google Scholar 

  5. Castellanos JA, TD Neira J (2004) Limits to the consistency of EKF-based slam. In: 5th IFAC symposium on intelligent autonomous vehicles, IAV’04, Lisbon, Portugal

  6. Csorba M (1997) Simultaneous localisation and map building. Ph.D. thesis

  7. Davey SJ (2007) Simultaneous localization and map building using the probabilistic multi-hypothesis tracker. IEEE Trans Robot 23(2):271–280. doi:10.1109/TRO.2007.892235

    Article  Google Scholar 

  8. Dissanayake MWMG, Newman P, Clark S, Durrant-Whyte HF, Csorba M (2001) A solution to the simultaneous localization and map building (SLAM) problem. IEEE Trans Robot Autom 17(3):229–241. doi:10.1109/70.938381

    Article  Google Scholar 

  9. Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: part I. IEEE Robot Autom Mag 13(2):99–110

    Article  Google Scholar 

  10. Eustice R, Walter M, Leonard J (2005) Sparse extended information filters: insights into sparsification. In: IEEE/RSJ international conference on intelligent robots and systems, pp 3281–3288. doi:10.1109/IROS.2005.1545053

  11. Eustice RM, Singh H, Leonard JJ (2006) Exactly sparse delayed-state filters for view-based SLAM. IEEE Trans Robot 22(6):1100–1114. doi:10.1109/TRO.2006.886264

    Article  Google Scholar 

  12. Grisetti G, Kummerle R, Stachniss C, Burgard W (2010) A tutorial on graph-based SLAM. IEEE Intell Transp Syst Mag 2(4):31–43. doi:10.1109/MITS.2010.939925

    Article  Google Scholar 

  13. Havangi R, Taghirad HD, Nekoui MA, Teshnehlab M (2014) A square root unscented FastSLAM with improved proposal distribution and resampling. IEEE Trans Ind Electron 61(5):2334–2345. doi:10.1109/TIE.2013.2270211

    Article  MATH  Google Scholar 

  14. Ho TS, Fai YC, Ming ESL (2015) Simultaneous localization and mapping survey based on filtering techniques. In: Control conference (ASCC), 10th Asian, pp 1–6. doi:10.1109/ASCC.2015.7244836

  15. Huang GP, Mourikis AI, Roumeliotis SI (2010) Observability-based rules for designing consistent EKF SLAM estimators. Int J Robot Res 29(5):502–528. doi:10.1177/0278364909353640

    Article  Google Scholar 

  16. Huang S, Wang Z, Dissanayake G (2008) Sparse local submap joining filter for building large-scale maps. IEEE Trans Robot 24(5):1121–1130. doi:10.1109/TRO.2008.2003259

    Article  Google Scholar 

  17. Julier SJ, Uhlmann JK (2001) A counter example to the theory of simultaneous localization and map building. In: Proceedings of IEEE international conference on robotics and automation (ICRA), vol 4, pp 4238–4243. doi:10.1109/ROBOT.2001.933280

  18. Kaess M, Ranganathan A, Dellaert F (2008) iSAM: incremental smoothing and mapping. IEEE Trans Robot 24(6):1365–1378. doi:10.1109/TRO.2008.2006706

    Article  Google Scholar 

  19. Key S (1993) Fundamentals of statistical signal processing, volume I: estimation theory, vol 1. Prentice Hall, Englewood Cliffs

    Google Scholar 

  20. Kim C, Sakthivel R, Chung WK (2008) Unscented FastSLAM: a robust and efficient solution to the SLAM problem. IEEE Trans Robot 24(4):808–820. doi:10.1109/TRO.2008.924946

    Article  Google Scholar 

  21. Kim C, Kim H, Chung WK (2011) Exactly Rao–Blackwellized unscented particle filters for SLAM. In: IEEE international conference on robotics and automation (ICRA), pp 3589–3594. doi:10.1109/ICRA.2011.5980086

  22. Kmmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) G2o: A general framework for graph optimization. In: IEEE international conference on robotics and automation (ICRA), pp 3607–3613. doi:10.1109/ICRA.2011.5979949

  23. Korkmaz Mehmet, Ylmaz Nihat, Durdu Akif (2016) Comparison of the slam algorithms: Hangar experiments. MATEC Web of Conferences. doi:10.1051/matecconf/20164203009

  24. Kurt-Yavuz Z, Yavuz S (2012) A comparison of EKF, UKF, FastSLAM2.0, and UKF-based FastSLAM algorithms. doi:10.1109/INES.2012.6249866

  25. Liu W WT, Y Z (2014) A relative map approach for efficient EKF-SLAM. In: Guidance, navigation and control conference (CGNCC), IEEE Chinese, pp 2646–2650. doi:10.1109/CGNCC.2014.7007586

  26. Martinelli A, Tomatis N, Siegwart R (2004) Open challenges in slam: an optimal solution based on shift and rotation invariants. In: Proceedings of IEEE international conference on robotics and automation (ICRA ’04), vol 2, pp 1327–1332. doi:10.1109/ROBOT.2004.1308008

  27. Martinelli A, Nguyen V, Tomatis N, Siegwart R (2007) A relative map approach to SLAM based on shift and rotation invariants. Robot Auton Syst 55(1):50–61

  28. Montemerlo M, Thrun S, Koller D, Wegbreit B (2002) Fastslam: A factored solution to the simultaneous localization and mapping problem. In: Proceedings of the AAAI national conference on artificial intelligence. AAAI, Edmonton, Alberta, Canada, pp 593–598

  29. Neira J, Tardos JD (2001) Data association in stochastic mapping using the joint compatibility test. IEEE Trans Robot Autom 17(6):890–897. doi:10.1109/70.976019

    Article  Google Scholar 

  30. Newman PM (1999) On the structure and solution of the simultaneous localisation and map building problem. Ph.D thesis

  31. Newman PM, Durrant-Whyte HF (2001) Geometric projection filter: an efficient solution to the slam problem. In: Proceedings of SPIE 4571, sensor fusion and decentralized control in robotic systems IV, Boston, MA , USA, vol 22, pp 22–33

  32. Nguyen V, Martinelli A, Siegwart R (2006) Improving the consistency of relative map. In: International conference on intelligent robots and systems, IEEE/RSJ, Beijing, China, pp 3556–3561. doi:10.1109/IROS.2006.281643

  33. Prez J, Caballero F, Merino L (2015) Enhanced Monte Carlo localization with visual place recognition for robust robot localization. J Intell Robot Syst. doi:10.1007/s10846-015-0198-y

  34. Sen Z, Lihua X, Adams M (2004) An efficient data association approach to simultaneous localization and map building. In: Proceedings of IEEE international conference on robotics and automation (ICRA ’04), vol 1, pp 854–859. doi:10.1109/ROBOT.2004.1307256

  35. Shu Yun C, Han Pang H (2006) Relative-absolute map filter for simultaneous localization and mapping. In: International conference on intelligent robots and systems, IEEE/RSJ, Beijing, China, pp 436–441. doi:10.1109/IROS.2006.282023

  36. Shu Yun C, Han Pang H (2007) Relative-absolute information for simultaneous localization and mapping. In: IEEE international conference on robotics and biomimetics, ROBIO, Sanya, China, pp 1641–1646, doi:10.1109/ROBIO.2007.4522411

  37. Siegwart R, Nourbakhsh R (2004) Introduction to autonomous mobile robots, 3rd edn. MIT press, Cambridge

    Google Scholar 

  38. Thrun S, Liu Y, Koller D, Ng AY, Ghahramani Z, Durrant-Whyte H (2004) Simultaneous localization and mapping with sparse extended information filters. Int J Robot Res 23(7–8):693–716. doi:10.1177/0278364904045479

    Article  Google Scholar 

  39. Walter MR, Eustice RM, Leonard JJ (2007) Exactly sparse extended information filters for feature-based SLAM. Int J Robot Res 26(4):335–359. doi:10.1177/0278364906075026

    Article  Google Scholar 

  40. Yadkuri F, Khosrowjerdi M (2015) Methods for improving the linearization problem of extended Kalman filter. J Intell Robot Syst 78(3–4):485–497. doi:10.1007/s10846-014-0089-7

    Article  Google Scholar 

  41. Zhang S, Xie L, Adams M (2005) An efficient data association approach to simultaneous localization and map building. Int J Robot Res 24(1):49–60. doi:10.1177/0278364904049251

    Article  Google Scholar 

  42. Zhao L, Huang S, Dissanayake G (2013) Linear slam: A linear solution to the feature-based and pose graph SLAM based on submap joining. In: IEEE/RSJ international conference on intelligent robots and systems, pp 24–30. doi:10.1109/IROS.2013.6696327

  43. Zhou W, Zhao C, Guo J (2009) The study of improving Kalman filters family for nonlinear SLAM. J Intell Robot Syst 56(5):543–564. doi:10.1007/s10846-009-9327-9

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Farzad Bahreinian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahreinian, S.F., Palhang, M. & Taban, M.R. A new approach to solve SLAM challenges by relative map filter. Intel Serv Robotics 10, 271–286 (2017). https://doi.org/10.1007/s11370-017-0226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-017-0226-9

Keywords

Navigation