Development of a smart handheld surgical tool with tactile feedback | Intelligent Service Robotics Skip to main content
Log in

Development of a smart handheld surgical tool with tactile feedback

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This paper presents a handheld surgical tool adapting a tactile feedback system. The tool consists of a 3-degree-of-freedom (DOF) force sensor and three tactile displays. The sensor is easily embedded in the tool by adopting the capacitive transduction principle. The sensor measures the direction and magnitude of the 3-DOF force applied to the tool tip. The fingertip grasping the tool is stimulated by the tactile display to transmit the contact force information measured by the sensor. The tactile display is actuated by employing a soft actuator technology based on a dielectric elastomer actuator such as a type of electroactive polymer actuator. In this work, a prototype of the tool is designed and fabricated. Its performance is experimentally validated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery. Ann Surg 239:14–21

    Article  Google Scholar 

  2. Tavakoli M (2008) Haptics for teleoperated surgical robotic systems. World Scientific Publishing, River Edge

    Book  Google Scholar 

  3. Faust RA (2007) Robotics in surgery: history, current and future applications. Nova Publishers, Hauppauge

    Google Scholar 

  4. Hansson BME, van Nieuwenhoven EJ, Bleichrodt RP (2003) Promising new technique in the repair of parastomal hernia. Surg Endosc 17:1789–1791

    Article  Google Scholar 

  5. Uneri A, Balicki M, Handa J , Gehlbach P, Taylor RH, Iordachita I (2010) New steady-hand eye robot with micro-force sensing for vitreoretinal surgery. In: IEEE RAS and EMBS international conference on biomedical robotics and biomechatronics (BioRob), pp 814–819

  6. MacLachlan R, Becker BC, Cuevas Tabares J, Podnar GW, Lobes L, Riviere CN (2012) Micron: an actively stabilized handheld tool for microsurgery. IEEE Trans Robot 28:195–212

    Article  Google Scholar 

  7. Chang D, Gu GM, Kim J (2013) Design of a novel tremor suppression device using a linear delta manipulator for micromanipulation. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 413–418

  8. Berkelman PJ, Whitcomb LL, Taylor RH, Jesen P (2003) A miniature microsurgical instrument tip force sensor for enhanced force feedback during robot-assisted manipulation. IEEE Trans Robot Autom 19:917–922

    Article  Google Scholar 

  9. Iordachita I, Sun Z, Balicki M, Kang JU, Phee SJ, Handa J, Gehlbach P, Tayler R (2009) A sub-millimetric, 0.25 \(mN\) resolution fully integrated fiber-optic force-sensing tool for retinal microsurgery. Int J Comput Assist Radiol Surg 4:383390

    Article  Google Scholar 

  10. Saxena A, Patel RV (2013) An active handheld device for compensation of physiological tremor using an ionic polymer metallic composite actuator. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 4275–4280

  11. Sommer-Larsen P, Hooker JC, Kofod G, West K, Benslimane M, Gravesen P (2001) Response of dielectric elastomer actuators. In: SPIE Electroactive Polymer Actuators and Devices (EAPAD), pp 157–163

  12. Goulbourne NC, Mockensturm EM, Frecker MI (2007) Electro-elastomers: large deformation analysis of silicone membranes. Int J Solids Struct 44:2609–2626

    Article  MATH  Google Scholar 

  13. Lee HS, Lee DH, Kim DG, Kim UK, Lee CH, Linh NN, Toan NC, Koo JC, Moon H, Nam J, Han J, Choi HR (2012) Tactile display with rigid coupling. In: SPIE electroactive polymer actuators and devices (EAPAD), pp 83400E1–83400E9

  14. Matysek M, Lotz P, Schlaak HF (2009) Tactile display with dielectric multilayer elastomer actuators. In: SPIE electroactive polymer actuators and devices (EAPAD), pp 72871D1–72871D9

  15. Koo IM, Jung K, Koo JC, Nam J, Lee YK, Choi HR (2008) Development of soft-actuator-based wearable tactile display. IEEE Trans Robot 24:549–558

    Article  Google Scholar 

  16. Choi HR, Lee SW, Jung KM, Koo JC, Lee S, Choi HG, Jeon JW, Nam JD (2004) Tactile display as a braille display for the visually disabled. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 1985–1990

  17. Baxter LK (2009) Capacitive sensors: design and applications. IEEE, NJ

    Google Scholar 

  18. Goulbourne NC, Son S, Fox JW (2007) Self-sensing McKibben actuators using dielectric elastomer sensors. In: SPIE electroactive polymer actuators and devices (EAPAD), pp 6524141–65241412

  19. Jung K, Kim KJ, Choi HR (2008) A self-sensing dielectric elastomer actuator. Sens Actuators A Phys 143:343–351

    Article  Google Scholar 

  20. Pelrine R, Kornbluh R, Pei Q, Joseph J (2000) High-speed electrically actuated elastomers with strain greater than 100%. Science 287:836–839

    Article  Google Scholar 

  21. Bar-Cohen Y (2004) Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential, and challenges. SPIE, Bellingham

    Book  Google Scholar 

  22. Pelrine RE, Kornbluh RD, Joseph JP (1998) Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens Actuators A Phys 64:77–85

    Article  Google Scholar 

  23. Jung K, Koo JC, Nam J, Lee YK, Choi HR (2007) Artificial annelid robot driven by soft actuators. Bioinspir Biomim 2:42–49

    Article  Google Scholar 

  24. Carpi F, Frediani G, Turco S, De Rossi D (2011) Bioinspired tunable lens with muscle-like electroactive elastomers. Adv Funct Mater 21:4152–4158

    Article  Google Scholar 

  25. Chuc NH, Park JK, Vuong NHL, Kim D, Koo JC, Lee Y, Nam JD, Choi HR (2009) Multi-jointed robot finger driven by artificial muscle actuator. In: IEEE international conference on robotics and automation (ICRA), pp 587–592

  26. Nguyen CT, Nguyen NL, Lee H, Kim D, Lee C, Moon H, Koo J, Nam J, Han J, Choi HR (2013) Enhancement of transduction performance of a dielectric elastomer actuator based on acrylonitrile butadiene rubber. Macromol Res 21:85–91

    Article  Google Scholar 

  27. Chen K, Weiland JD (2010) Anisotropic and inhomogeneous mechanical characteristics of the retina. J Biomech 43:1417–1421

    Article  Google Scholar 

  28. Wu W, Peters WH, Hammer ME (1987) Basic mechanical properties of retina in simple elongation. J Biomech Eng 109:65–67

    Article  Google Scholar 

  29. Jones LA, Lederman SJ (2006) Human hand function. Oxford University Press, Oxford

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2011-0030075) and by the convergence technology development program for bionic arm through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. 2014M3C1B2048175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyouk Ryeol Choi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (wmv 42916 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C., Kim, U., Lee, DH. et al. Development of a smart handheld surgical tool with tactile feedback. Intel Serv Robotics 10, 149–158 (2017). https://doi.org/10.1007/s11370-016-0214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-016-0214-5

Keywords

Navigation