LoG: a locally-global model for entity disambiguation | World Wide Web Skip to main content
Log in

LoG: a locally-global model for entity disambiguation

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Entity disambiguation (ED) aims to link textual mentions in a document to the correct named entities in a knowledge base (KB). Although global ED models usually outperform local models by collectively linking mentions based on the topical coherence assumption, they may still incur incorrect entity assignment when a document contains multiple topics. Therefore, we propose a Locally-Global model (LoG) for ED which extracts global features locally, i.e., among a limited number of neighboring mentions, to combine the respective superiority of both models. In particular, we derive mention neighbors according to the syntactic distance on a dependency parse tree, and propose a tree connection method CoSimTC to measure the cross-tree distance between mentions. We also recognize the importance of keywords in a document for collective entity disambiguation, which reveal the central topic information of the document. Hence, we propose a keyword extraction method Sent2Word to detect keywords of each document. Furthermore, we extend the Graph Attention Network (GAT) to integrate both local and global features to produce a discriminative representation for each candidate entity. Our experimental results on six widely-adopted public datasets demonstrate better performance compared with state-of-the-art ED approaches. The high efficiency of the LoG model further verifies its feasibility in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alhelbawy, A., Gaizauskas, R.: Graph ranking for collective named entity disambiguation. In: ACL, vol. 2, pp. 75–80 (2014)

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Cao, Y., Hou, L., Li, J., Liu, Z.: Neural collective entity linking. In: COLING, pp. 675–686 (2018)

  4. Chen, S., Wang, J., Jiang, F., Lin, C.Y.: Improving entity linking by modeling latent entity type information. In: AAAI (2020)

  5. Cucerzan, S.: Large-scale named entity disambiguation based on Wikipedia data. In: EMNLP-CoNLL (2007)

  6. Dredze, M., McNamee, P., Rao, D., Gerber, A., Finin, T.: Entity disambiguation for knowledge base population. In: COLING, pp. 277–285 (2010)

  7. Fang, Z., Cao, Y., Li, Q., Zhang, D., Zhang, Z., Liu, Y.: Joint entity linking with deep reinforcement learning. In: The World Wide Web Conference, pp. 438–447 (2019)

  8. Francis-Landau, M., Durrett, G., Klein, D.: Capturing semantic similarity for entity linking with convolutional neural networks. In: NAACL, pp. 1256–1261 (2016)

  9. Gabrilovich, E., Ringgaard, M., Subramanya, A.: Facc1: Freebase annotation of clueweb corpora Note: http://lemurproject.org/clueweb09/FACC1/ Cited by 5 (2013)

  10. Ganea, O.E., Hofmann, T.: Deep joint entity disambiguation with local neural attention. In: EMNLP, pp. 2619–2629 (2017)

  11. Ganea, O.E., Ganea, M., Lucchi, A., Eickhoff, C., Hofmann, T.: Probabilistic bag-of-hyperlinks model for entity linking. In: WWW, pp. 927–938 (2016)

  12. Guo, Z., Barbosa, D.: Robust entity linking via random walks. In: CIKM, pp. 499–508. ACM (2014)

  13. Guo, Z., Barbosa, D.: Robust named entity disambiguation with random walks. Semant. Web 9(4), 459–479 (2018)

    Article  Google Scholar 

  14. Gupta, N., Singh, S., Roth, D.: Entity linking via joint encoding of types, descriptions, and context. In: EMNLP, pp. 2681–2690 (2017)

  15. Hachey, B., Radford, W., Curran, J.R.: Graph-based named entity linking with wikipedia. In: WISE, pp. 213–226. Springer (2011)

  16. Han, X., Sun, L., Zhao, J.: Collective entity linking in Web text: a graph-based method. In: SIGIR, pp. 765–774. ACM (2011)

  17. He, Z., Liu, S., Li, M., Zhou, M., Zhang, L., Wang, H.: Learning entity representation for entity disambiguation. In: ACL(Short Papers), vol. 2, pp. 30–34 (2013)

  18. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Taneva, B., Thater, S., Weikum, G.: Robust disambiguation of named entities in text. In: EMNLP, pp. 782–792 (2011)

  19. Hua, W., Wang, Z., Wang, H., Zheng, K., Zhou, X.: Short text understanding through lexical-semantic analysis. In: ICDE, pp. 495–506 (2015)

  20. Hua, W., Zheng, K., Zhou, X.: Microblog entity linking with social temporal context. In: SIGMOD, pp. 1761–1775 (2015)

  21. Hua, W., Wang, Z., Wang, H., Zheng, K., Zhou, X.: Understand short texts by harvesting and analyzing semantic knowledge. IEEE Trans. Knowl. Data Eng. 29(3), 499–512 (2017)

    Article  Google Scholar 

  22. Kipf, T. N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2016)

  23. Le, P., Titov, I.: Improving entity linking by modeling latent relations between mentions. In: ACL, pp. 1595–1604 (2018)

  24. Lehmann, J., Monahan, S., Nezda, L., Jung, A., Shi, Y.: Lcc approaches to knowledge base population at tac 2010. In: TAC (2010)

  25. Liu, X., Li, Y., Wu, H., Zhou, M., Wei, F., Lu, Y.: Entity linking for tweets. In: ACL, vol. 1, pp. 1304–1311 (2013)

  26. Mihalcea, R., Csomai, A.: Wikify!: linking documents to encyclopedic knowledge. In: CIKM, pp. 233–242. ACM (2007)

  27. Mueller, D., Durrett, G.: Effective use of context in noisy entity linking. In: EMNLP, pp. 1024–1029 (2018)

  28. Nie, F., Cao, Y., Wang, J., Lin, C.Y., Pan, R.: Mention and entity description co-attention for entity disambiguation. In: AAAI (2018)

  29. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the Web. Tech. rep., Stanford InfoLab (1999)

  30. Pappu, A., Blanco, R., Mehdad, Y., Stent, A., Thadani, K.: Lightweight multilingual entity extraction and linking. In: WSDM, pp. 365–374. ACM (2017)

  31. Pennington, J., Socher, R., Manning, C.: Glove: Global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

  32. Phan, M.C., Sun, A., Tay, Y., Han, J., Li, C.: Neupl: Attention-based semantic matching and pair-linking for entity disambiguation. In: CIKM, pp. 1667–1676. ACM (2017)

  33. Ratinov, L., Roth, D., Downey, D., Anderson, M.: Local and global algorithms for disambiguation to wikipedia. In: ACL, pp. 1375–1384 (2011)

  34. Seidman, S.B.: Network structure and minimum degree. Social Netw. 5(3), 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  35. Tixier, A., Malliaros, F., Vazirgiannis, M.: A graph degeneracy-based approach to keyword extraction. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pp. 1860–1870 (2016)

  36. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

  37. Xin, K., Hua, W., Liu, Y., Zhou, X.: Entity disambiguation based on parse tree neighbours on graph attention network. In: 523–537 (2019)

  38. Yamada, I., Shindo, H., Takeda, H., Takefuji, Y.: Joint learning of the embedding of words and entities for named entity disambiguation. In: CoNLL, p 250 (2016)

  39. Yang, X., Gu, X., Lin, S., Tang, S., Zhuang, Y., Wu, F., Chen, Z., Hu, G., Ren, X.: Learning dynamic context augmentation for global entity linking. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 271–281 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Hua.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Web Information Systems Engineering 2019

Guest Editors: Reynold Cheng, Nikos Mamoulis, and Xin Huang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, K., Hua, W., Liu, Y. et al. LoG: a locally-global model for entity disambiguation. World Wide Web 24, 351–373 (2021). https://doi.org/10.1007/s11280-020-00845-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-020-00845-4

Keywords

Navigation