Performance Analysis of Downlink-NOMA Over Málaga Distributed Optical Links | Wireless Personal Communications Skip to main content

Advertisement

Log in

Performance Analysis of Downlink-NOMA Over Málaga Distributed Optical Links

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Non-orthogonal multiple access (NOMA) can be a desirable method since it can utilize resources efficiently to provide larger capacity. Similarly, optical transmission is also becoming popular due to the availability of licence-free large bandwidth and low-cost transceiver implementation. Although optical NOMA system can be promising for long range wireless systems, investigation of its reliability performance is essential for different channel models. In this study, outage probability, channel capacity, symbol error rate expressions, diversity and coding gains for arbitrary number of users are obtained for downlink-NOMA over free space optical links modeled with Málaga distribution. Theoretical results are verified by numerical examples for various scenarios providing useful background for future analyses and designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

Notes

  1. In what follows, index \( _j\) will be dropped for the sake of simplicity in derivations.

References

  1. Wunder, G., Jung, P., Kasparick, M., Wild, T., Schaich, F., Chen, Y., Brink, S. T., Gaspar, I., Michailow, N., Festag, A., Mendes, L., Cassiau, N., Ktenas, D., Dryjanski, M., Pietrzyk, S., Eged, B., Vago, P., & Wiedmann, F. (2014). 5GNOW: Non-orthogonal, asynchronous waveforms for future mobile applications. IEEE Communications Magazine, 52(2), 97–105. https://doi.org/10.1109/MCOM.2014.6736749

    Article  Google Scholar 

  2. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys & Tutorials, 19(2), 721–742. https://doi.org/10.1109/COMST.2016.2621116

    Article  Google Scholar 

  3. Fernández Montefiore, M. C., González, G., Lopez-Martinez, F. J., & Gregorio, F. (2021). Effective capacity of finite-blocklength NOMA and OMA with heterogeneous latency requirements. In: 2021 Argentine Conference on Electronics (CAE), pp 78–81. https://doi.org/10.1109/CAE51562.2021.9397566.

  4. Zhang, Y., & Kwan, D. (2017). Energy-efficient user scheduling and power allocation for noma wireless networks. The University of New South Wales.

  5. Li, Z., Chen, W., Wu, Q., Wang, K., & Li, J. (2022). Joint beamforming design and power splitting optimization in IRS-assisted SWIPT NOMA networks. IEEE Transactions on Wireless Communications, 21(3), 2019–2033. https://doi.org/10.1109/TWC.2021.3108901

    Article  Google Scholar 

  6. Ding, Z., Yang, Z., Fan, P., & Poor, H. V. (2014). On the performance of non-orthogonal multiple access in 5G systems with randomly deployed users. IEEE Signal Processing Letters, 21(12), 1501–1505. https://doi.org/10.1109/LSP.2014.2343971

    Article  Google Scholar 

  7. Hou, T., Sun, X., & Song, Z. (2018). Outage performance for non-orthogonal multiple access with fixed power allocation over nakagami-\({m}\) fading channels. IEEE Communications Letters, 22(4), 744–747.

    Article  Google Scholar 

  8. Agarwal, A., Chaurasiya, R., Rai, S., & Jagannatham, A. K. (2020). Outage probability analysis for NOMA downlink and uplink communication systems with generalized fading channels. IEEE Access, 8, 220461–220481. https://doi.org/10.1109/ACCESS.2020.3042993

    Article  Google Scholar 

  9. Shaik, T., & Dhuli, R. (2022). Outage performance of multi cell-NOMA network over rician/rayleigh faded channels in interference limited scenario. AEU - International Journal of Electronics and Communications, 145, 154107. https://doi.org/10.1016/j.aeue.2022.154107

    Article  Google Scholar 

  10. Bepari, D., Mondal, S., Pareek, P., & Gupta, N. (2024). Uplink performance analysis of wireless energy harvesting-enabled NOMA-based networks. Mobile Networks and Applications. https://doi.org/10.1007/s11036-024-02326-8

    Article  Google Scholar 

  11. Wang, J., Liu, Y., Mu, X., Ma, X., Liu, W., & Xie, W. (2024). Joint subchannel and power allocation in NOMA-based spatial modulation systems. IEEE Transactions on Wireless Communications. https://doi.org/10.1109/TWC.2024.3387551

    Article  Google Scholar 

  12. Nauryzbayev, G., Omarov, O., Arzykulov, S., Rabie, K. M., Li, X., & Eltawil, A. M. (2021). Performance limits of wireless powered cooperative NOMA over generalized fading. Transactions on Emerging Telecomunications Technologies, 33(4), 4415. https://doi.org/10.1002/ett.4415

    Article  Google Scholar 

  13. Kara, F., & Kaya, H. (2018). BER performances of downlink and uplink NOMA in the presence of SIC errors over fading channels. IET Communications, 12(15), 1834–1844. https://doi.org/10.1049/iet-com.2018.5278

    Article  Google Scholar 

  14. Lee, I., & Kim, J. (2019). Average symbol error rate analysis for non-orthogonal multiple access with \({M}\)-ary QAM signals in rayleigh fading channels. IEEE Communications Letters, 23(8), 1328–1331. https://doi.org/10.1109/LCOMM.2019.2921770

    Article  Google Scholar 

  15. Yu, Y., Chen, H., Li, Y., Ding, Z., & Vucetic, B. (2018). On the performance of non-orthogonal multiple access in short-packet communications. IEEE Communications Letters, 22(3), 590–593. https://doi.org/10.1109/LCOMM.2017.2786252

    Article  Google Scholar 

  16. Sashiganth, M., Thiruvengadam, S. J., & Kumar, D. S. (2020). BER analysis of full duplex NOMA downlink and uplink cooperative user relaying systems over Nakagami-\(m\) fading environment. Physical Communication, 38, 100963. https://doi.org/10.1016/j.phycom.2019.100963

    Article  Google Scholar 

  17. Alqahtani, A., Alsusa, E., Al-Dweik, A., & Al-Jarrah, M. (2021). Performance analysis for downlink NOMA over \(\alpha \) - \(\mu \) generalized fading channels. IEEE Transactions on Vehicular Technology, 70(7), 6814–6825. https://doi.org/10.1109/TVT.2021.3082917

    Article  Google Scholar 

  18. Alqahtani, A. S., & Alsusa, E. (2020). Performance analysis of downlink NOMA system over \(\alpha \) - \(\eta \) - \(\mu \) generalized fading channel. In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp 1–5

  19. Thapliyal, S., Pandey, R., & Charan, C. (2022). NOMA-based UAV system under finite blocklength regime with analysis in Rician fading channel. Digital Signal Processing, 120, 103253. https://doi.org/10.1016/j.dsp.2021.103253

    Article  Google Scholar 

  20. Aslan, K., & Gucluoglu, T. (2021). Performance analysis of downlink-noma over generalized-k fading channels. Physical Communication, 48, 101414. https://doi.org/10.1016/j.phycom.2021.101414

    Article  Google Scholar 

  21. Aslan, K., & Gucluoglu, T. (2022). Performance analysis of NOMA uplink transmission over generalized-K fading channels. International Journal of Communication Systems, 35(6), 5063. https://doi.org/10.1002/dac.5063

    Article  Google Scholar 

  22. Dixit, V., & Kumar, A. (2022). BER performance of MIMO based NOMA-VLC system with imperfect SIC. Transactions on Emerging Telecommunications Technologies, 33(4), 4422. https://doi.org/10.1002/ett.4422

    Article  Google Scholar 

  23. Uday, T., Kumar, A., & Natarajan, L. (2022). Joint NOMA for improved SER of cell-edge users in multi-cell indoor VLC. IEEE Wireless Communications Letters, 11(1), 13–17. https://doi.org/10.1109/LWC.2021.3117923

    Article  Google Scholar 

  24. Kaushal, H., & Kaddoum, G. (2017). Optical communication in space: Challenges and mitigation techniques. IEEE Communications Surveys Tutorials, 19(1), 57–96. https://doi.org/10.1109/COMST.2016.2603518

    Article  Google Scholar 

  25. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials, 16(4), 2231–2258. https://doi.org/10.1109/COMST.2014.2329501

    Article  Google Scholar 

  26. Kannan, A., Hemanth, C., & Sangeetha, R. G. (2017). A review on channel models in free space optical communication systems. Optics & Laser Technology, 97, 161–171. https://doi.org/10.1016/j.optlastec.2017.06.018

    Article  Google Scholar 

  27. Samimi, H. (2012). Distribution of the sum of k-distributed random variables and applications in free-space optical communications. Optoelectronics, IET, 6, 1–6. https://doi.org/10.1049/iet-opt.2010.0105

    Article  Google Scholar 

  28. Popoola, W., & Ahmadi, V. (2008). Performance of sub-carrier modulated free-space optical communication link in negative exponential atmospheric turbulence environment. International Journal of Autonomous and Adaptive Communications Systems, 1, 342–355. https://doi.org/10.1504/IJAACS.2008.019809

    Article  Google Scholar 

  29. Gupta, R., Kamal, T., & Singh, P. (2019). Concatenated LDPC-TCM codes for better performance of OFDM-FSO system using gamma-gamma fading model. Wireless Personal Communications, 106, 2247–2260. https://doi.org/10.1007/s11277-018-5939-3

    Article  Google Scholar 

  30. Yu, S., Ding, J., Fu, Y., Ma, J., Tan, L., & Wang, L. (2019). Novel approximate and asymptotic expressions of the outage probability and BER in gamma-gamma fading FSO links with generalized pointing errors. Optics Communications, 435, 289–296. https://doi.org/10.1016/j.optcom.2018.11.021

    Article  Google Scholar 

  31. El Saghir, B. M., El Mashade, M. B., & Aboshosha, A. M. (2021). Performance analysis of MRR FSO communication system under gamma-gamma turbulence channel with pointing error. Optics Communications, 489, 126891. https://doi.org/10.1016/j.optcom.2021.126891

    Article  Google Scholar 

  32. Updhya, A. (2022). Investigation of mixed RF/FSO decode-and-forward NOMA cooperative relaying networks. Wireless Personal Communications, 124, 2923–2938. https://doi.org/10.1007/s11277-022-09496-2

    Article  Google Scholar 

  33. Zhang, Z., Sun, Q., López-Benítez, M., Chen, X., & Zhang, J. (2022). Performance analysis of dual-hop RF/FSO relaying systems with imperfect CSI. IEEE Transactions on Vehicular Technology, 71(5), 4965–4976. https://doi.org/10.1109/TVT.2022.3149759

    Article  Google Scholar 

  34. Jamali, M. V., & Mahdavifar, H. (2020). Uplink non-orthogonal multiple access over mixed RF-FSO systems. IEEE Transactions on Wireless Communications, 19(5), 3558–3574. https://doi.org/10.1109/TWC.2020.2974947

    Article  Google Scholar 

  35. Ahmed, M. S., & Gucluoglu, T. (2021). Maximum ratio transmission based generalized frequency division multiplexing over gamma-gamma channel. Optics Communications, 492, 126965. https://doi.org/10.1016/j.optcom.2021.126965

    Article  Google Scholar 

  36. Das, A., Bag, B., Bose, C., & Chandra, A. (2020). Free space optical links over málaga turbulence channels with transmit and receive diversity. Optics Communications, 456, 124591. https://doi.org/10.1016/j.optcom.2019.124591

    Article  Google Scholar 

  37. Chen, D., Liu, Y., & Wang, M. (2021). Channel capacity and outage probability analysis for free space optical communication over composite channel. Optical Review, 28, 368–375. https://doi.org/10.1007/s10043-021-00669-1

    Article  Google Scholar 

  38. Samimi, H. (2012). Optical communication using subcarrier intensity modulation through generalized turbulence channels. Journal of Optical Communications and Networking, 4(5), 378–381. https://doi.org/10.1364/JOCN.4.000378

    Article  Google Scholar 

  39. Yousif, B. B., Elsayed, E. E., & Alzalabani, M. M. (2019). Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on mimo wireless communications system. Optics Communications, 436, 197–208. https://doi.org/10.1016/j.optcom.2018.12.034

    Article  Google Scholar 

  40. Chen, D., Lu, M., & Wang, H. (2021). Performance of spatial diversity for FSO links with pointing errors over malaga turbulence. In: 2021 19th International Conference on Optical Communications and Networks (ICOCN), pp 1–3. https://doi.org/10.1109/ICOCN53177.2021.9563632

  41. Alheadary, W. G., Park, K.-H., & Alouini, M.-S. (2016). Performance analysis of subcarrier intensity modulation using rectangular QAM over malaga turbulence channels with integer and non-integer \(\beta \). Wireless Communications and Mobile Computing, 16(16), 2730–2742. https://doi.org/10.1002/wcm.2721

    Article  Google Scholar 

  42. Yousif, B. B., & Elsayed, E. E. (2019). Performance enhancement of an orbital-angular-momentum-multiplexed free-space optical link under atmospheric turbulence effects using spatial-mode multiplexing and hybrid diversity based on adaptive MIMO equalization. IEEE Access, 7, 84401–84412. https://doi.org/10.1109/ACCESS.2019.2924531

    Article  Google Scholar 

  43. Li, Y.-T., Geng, T.-W., & Gao, S.-J. (2023). On the error performance and channel capacity of a uniquely decodable coded FSO system over malaga turbulence with pointing errors. Optical Express, 31(21), 34264–34279. https://doi.org/10.1364/OE.499764

    Article  Google Scholar 

  44. Vishwakarma, N., & R, S. (2021). Performance analysis of hybrid FSO/RF communication over generalized fading models. Optics Communications, 487, 126796. https://doi.org/10.1016/j.optcom.2021.126796

    Article  Google Scholar 

  45. Sun, Q., Hu, Q., Wu, Y., Chen, X., Zhang, J., & Lopez-Benıtez, M. (2024). Performance analysis of mixed FSO/RF system for satellite-terrestrial relay network. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2024.3373653

    Article  Google Scholar 

  46. Girdher, A., Bansal, A., & Dubey, A. (2024). Energy efficient NOMA for mixed FSO-RF communication system with IRS-aided SLIPT. IEEE Transactions on Vehicular Technology. https://doi.org/10.1109/TVT.2024.3384079

    Article  Google Scholar 

  47. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series, and Products (7th ed., p. 1171). Amsterdam: Elsevier/Academic Press.

    Google Scholar 

  48. Mahmood, A., Khan, S., Hussain, S., & Zeeshan, M. (2021). Performance analysis of multi-user downlink PD-NOMA under SUI fading channel models. IEEE Access, 9, 52851–52859. https://doi.org/10.1109/ACCESS.2021.3070147

    Article  Google Scholar 

  49. Zhao, N., Li, D., Liu, M., Cao, Y., Chen, Y., Ding, Z., & Wang, X. (2019). Secure transmission via joint precoding optimization for downlink MISO NOMA. IEEE Transactions on Vehicular Technology, 68(8), 7603–7615. https://doi.org/10.1109/TVT.2019.2920144

    Article  Google Scholar 

  50. Almohamad, A., Hasna, M. O., Althunibat, S., & Qaraqe, K. (2021). A novel downlink IM-NOMA scheme. IEEE Open Journal of the Communications Society, 2, 235–244. https://doi.org/10.1109/OJCOMS.2021.3051082

    Article  Google Scholar 

  51. Nguyen, T. V., Pham, T. V., Dang, N. T., & Pham, A. T. (2020). Performance of generalized QAM/FSO systems with pointing misalignment and phase error over atmospheric turbulence channels. IEEE Access, 8, 203631–203644. https://doi.org/10.1109/ACCESS.2020.3036643

    Article  Google Scholar 

  52. Yahya, H., Alsusa, E., & Al-Dweik, A. (2021). Exact ber analysis of noma with arbitrary number of users and modulation orders. IEEE Transactions on Communications, 69(9), 6330–6344. https://doi.org/10.1109/TCOMM.2021.3088526

    Article  Google Scholar 

  53. Jurado-Navas, A., Garrido-Balsells, J., Paris, J. F., & Puerta-Notario, A. (2011). A unifying statistical model for atmospheric optical scintillation. Numerical simulations of physical and engineering processes, 181, 181–205.

    Google Scholar 

  54. Zheng, J., Zhang, Q., & Qin, J. (2019). Average block error rate of downlink noma short-packet communication systems in Nakagami- \(m\) fading channels. IEEE Communications Letters, 23(10), 1712–1716. https://doi.org/10.1109/LCOMM.2019.2930999

    Article  Google Scholar 

  55. Mathai, A. M., & Saxena, R. K. (1973). Generalized hypergeometric functions with applications in statistics and physical sciences. Lecture Notes in Mathematics, vol. 348.

  56. Indefinite integral of Meijer-G function. Retrieved 22 Oct 2023, from https://functions.wolfram.com/HypergeometricFunctions/MeijerG/21/01/01/

  57. Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398. https://doi.org/10.1109/TCOMM.2003.815053

    Article  Google Scholar 

  58. Lozano, A., Tulino, A. M., & Verdu, S. (2005). High-SNR power offset in multiantenna communication. IEEE Transactions on Information Theory, 51(12), 4134–4151. https://doi.org/10.1109/TIT.2005.858937

    Article  MathSciNet  Google Scholar 

  59. Badarneh, O., & Aloqlah, M. (2015). Performance analysis of digital communication systems over generalized \(\alpha -\eta -\mu \) fading channels. IEEE Transactions on Vehicular Technology, 65, 1–1. https://doi.org/10.1109/TVT.2015.2504381

    Article  Google Scholar 

  60. Concus, P., Cassatt, D., Jaehnig, G., & Melby, E. (1963). Tables for the evaluation of \(\int _{x=0}^{\infty }x^{\beta }e^{-x}f(x)dx\) by gauss-laguerre quadrature. Mathematics of Computation, 17(83), 245–256.

    MathSciNet  Google Scholar 

  61. Ansari, I. S., Yilmaz, F., & Alouini, M.-S. (2016). Performance analysis of free-space optical links over málaga (\(\cal{M} \)) turbulence channels with pointing errors. IEEE Transactions on Wireless Communications, 15(1), 91–102.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Research Fund of the Yildiz Technical University. Project Number: 5132

Funding

Supported by Research Fund of the Yildiz Technical University. Project Number: 5132

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kardes Aslan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Derivation of PDF of SINR

Three steps to obtain the PDF of \(\gamma \) in (7) contain the derivations of PDFs for \(\frac{\delta }{\lambda }\), \(\frac{\delta }{\lambda }+\varrho \) and \(\frac{\kappa }{\frac{\delta }{\lambda }+\varrho }\). In the first stage, it is required that PDF of \(\frac{\delta }{\lambda }\) must be evaluated by using the PDF of \(\lambda \) (i.e. channel gain=\(I^2\)) which can be easily obtained as below,

$$\begin{aligned} f_{\lambda }(\lambda )=\frac{A}{2}\displaystyle \sum _{k=1}^{\beta }a_k\lambda ^{\frac{\alpha +k}{4}-1} K_{\alpha -k}\bigg (2\sqrt{\zeta \sqrt{\lambda }}\bigg ), \end{aligned}$$
(A1)

where \(\zeta =\frac{\alpha \beta }{\eta \beta +\Omega '}\). The PDF of \(\tau =\frac{\delta }{\lambda }\) can be found via CDF of \(\lambda \) in (A1). The CDF of \(\tau \) is \(F_{\tau }(\tau )=1-Pr(0\le \lambda \le \frac{\delta }{\tau })\), then

$$\begin{aligned} F_{\tau }(\tau )=1-\int _{\lambda =0}^{\frac{\delta }{\tau }}f_{\lambda }(\lambda )d\lambda =1-F_{\lambda }\bigg (\frac{\delta }{\tau }\bigg ). \end{aligned}$$
(A2)

When derivatives of both sides in (A2) are computed, one can get \(f_{\tau }(\tau )=\frac{\delta }{\tau ^2}f_{\lambda }(\frac{\delta }{\tau })\). By substituting \(\frac{\delta }{\tau }\) into (A1), \(f_{\tau }(\tau )\) is found as,

$$\begin{aligned} f_{\tau }(\tau )=\frac{A\delta }{2\tau ^2}\displaystyle \sum _{k=1}^{\beta }a_k\bigg (\frac{\delta }{\tau }\bigg )^{\frac{\alpha +k}{4}-1}K_{\alpha -k}\bigg (2\sqrt{\zeta \sqrt{\frac{\delta }{\tau }}}\bigg ). \end{aligned}$$
(A3)

(6) can be rewritten as \(\gamma =\frac{\kappa }{\tau +\varrho }\). Considering \(\psi =\tau +\varrho \) and by using the CDF such that \(F_{\psi }(\psi )=Pr(\tau +\varrho \le \psi )\hspace{2pt}\Longrightarrow \hspace{2pt}F_{\psi }(\psi ) =Pr(0\le \tau \le \psi -\varrho )=F_{\tau }(\psi -\varrho )\). It is evident that after derivative of \(F_{\tau }(\psi -\varrho )\) is evaluated, \(f_{\psi }(\psi )\) can be found as,

$$\begin{aligned} f_{\psi }(\psi )=\frac{A\delta }{2(\psi -\varrho )^2}\displaystyle \sum _{k=1}^{\beta }a_k\bigg (\frac{\delta }{\psi -\varrho }\bigg )^{\frac{\alpha +k}{4}-1}K_{\alpha -k} \bigg (2\sqrt{\zeta \sqrt{\frac{\delta }{\psi -\varrho }}}\bigg ). \end{aligned}$$
(A4)

(6) becomes \(\gamma =\frac{\kappa }{\psi }\). PDF of \(\gamma \) can be obtained from \(F_{\gamma }(\gamma )=Pr(\frac{\kappa }{\psi }\le \gamma )\hspace{2pt}\Longrightarrow \hspace{2pt} F_{\gamma }(\gamma )=1-Pr(\varrho \le \psi \le \frac{\kappa }{\gamma })\) as follows,

$$\begin{aligned} f_{\gamma }(\gamma )=\frac{\kappa }{\gamma ^2}\frac{A\delta }{2(\frac{\kappa }{\gamma }-\varrho )^2} \displaystyle \sum _{k=1}^{\beta }a_k\bigg (\frac{\delta }{\frac{\kappa }{\gamma }-\varrho }\bigg )^{\frac{\alpha +k}{4}-1} K_{\alpha -k}\bigg (2\sqrt{\zeta \sqrt{\frac{\delta }{\frac{\kappa }{\gamma }-\varrho }}}\bigg ). \end{aligned}$$
(A5)

Boundary values of \(\gamma \) are computed as \(0\le \gamma \le \frac{\kappa }{\varrho }\). When (A5) is rearranged, (7) can be obtained.

Appendix B: PDF Parameters of Normalized SINR

In this section, derivations of the PDF of normalized SINR and the parameters a and t [57] (needed for diversity and coding gains) are presented. The term \((\sqrt{\sqrt{\chi }})^{\alpha +k-4}K_{\alpha -k}\bigg (2\sqrt{\zeta \sqrt{\chi }}\bigg )\) in (15) is multiplied with \(\frac{(2\sqrt{\zeta })^{\alpha +k-4}}{(2\sqrt{\zeta })^{\alpha +k-4}}\) in order to write it in terms of Meijer’s G-function [55, Section 2.6]. Then, it can be rewritten as,

$$\begin{aligned} \bigg (2\sqrt{\zeta \sqrt{\chi }}\bigg )^{\alpha +k-4}K_{\alpha -k}\bigg (2\sqrt{\zeta \sqrt{\chi }}\bigg ) =2^{\alpha +k-5}G_{0,2}^{2,0}\bigg (\zeta \sqrt{\chi }| _{\alpha -2,\;\;\;k-2}\bigg ). \end{aligned}$$
(B6)

When (B6) is substituted into (15), it can be written as,

$$\begin{aligned} f_{\chi }(\chi )=\frac{A}{4}\displaystyle \sum _{k=1}^{\beta }a_k\frac{1}{(\sqrt{\zeta })^{\alpha +k-4}} G_{0,2}^{2,0}\bigg (\zeta \sqrt{\chi }| _{\alpha -2,\;\;\;k-2}\bigg ). \end{aligned}$$
(B7)

Meijer’s G-function in (B7) can be written as follows ( [55, Theorem 1.4.3, Eq. (1.4.14)]) where z, q, p, \(a_p\) and \(b_q\) correspond to \(\zeta \sqrt{\chi }\), 2, 0, \((-,\hspace{10pt}{-})\) and \(({\alpha -2,\hspace{10pt} k-2})\), respectively.

$$\begin{aligned} G_{p,q}^{q,0}(z\vert ^{a_p}_{b_q})\sim {H_{p,q}(z)}=[e^{(p-q)z^{\frac{1}{q-p}}}]z^{\rho ^{*}} \bigg [\frac{(2\pi )^{\frac{q-p-1}{2}}}{(q-p)^{\frac{1}{2}}}+\frac{M_1}{z^{\frac{1}{q-p}}}+\frac{M_2}{z^{\frac{1}{q-p}}}+...\bigg ], \end{aligned}$$
(B8)
$$\begin{aligned} \rho ^{*}=\frac{1}{q-p}\bigg [\sum _{j=1}^{q}{b_j}-\sum _{j=1}^{p}{a_j}+\frac{p-q+1}{2}\bigg ]. \end{aligned}$$
(B9)

When \(p=0\) and \(q=2\) are substituted into Eqs. (B8) and (B9), they become \(G_{0,2}^{2,0}(z|^{a_p}_{b_q})\sim [e^{-2\sqrt{z}}]z^{\rho ^{*}}\bigg [\pi ^{\frac{1}{2}} +\frac{M_1}{z^{\frac{1}{2}}}+\frac{M_2}{z^{\frac{1}{2}}}+...\bigg ]\) and \(\rho ^{*}=\frac{1}{2}[\alpha +k-\frac{9}{2}]\). The term \(e^{-2\sqrt{z}}\) can be expanded Maclaurin series as below,

$$\begin{aligned} & G_{0,2}^{2,0}(z|^{a_p}_{b_q})\sim \bigg [1+\sum _{i=1}^{\infty }{\frac{(-2\sqrt{z})^i}{i!}}\bigg ] z^{\rho ^{*}}\bigg [\pi ^{\frac{1}{2}}+\frac{M_1}{z^{\frac{1}{2}}}+\frac{M_2}{z^{\frac{1}{2}}}+...\bigg ], \end{aligned}$$
(B10)
$$\begin{aligned} & \quad \begin{aligned}&G_{0,2}^{2,0}(z\vert ^{a_p}_{b_q})\sim {z^{\rho ^*}\pi ^{\frac{1}{2}}}+z^{\rho ^*}\bigg [\frac{M_1}{z^{\frac{1}{2}}}+\frac{M_2}{z^{\frac{1}{2}}}+...\bigg ]\\&\hspace{10pt}+z^{\rho ^*}\sum _{i=1}^{\infty }{\frac{(-2\sqrt{z})^i}{i!}}\bigg [\pi ^{\frac{1}{2}} +\frac{M_1}{z^{\frac{1}{2}}}+\frac{M_2}{z^{\frac{1}{2}}}+...\bigg ]. \end{aligned} \end{aligned}$$
(B11)

The result obtained by substituting (B11) into (B7) can matches with (16) as below,

$$\begin{aligned} \begin{aligned} f_{\chi }(\chi )=&a\chi ^t+o(\chi ^t)\sim \frac{A}{4}\displaystyle \sum _{k=1}^{\beta } a_k\frac{1}{(\sqrt{\zeta })^{\alpha +k-4}}\bigg [{z^{\rho ^*}\pi ^{\frac{1}{2}}}+z^{\rho ^*}\bigg [\frac{M_1}{z^{\frac{1}{2}}}+\frac{M_2}{z^{\frac{1}{2}}}+...\bigg ]\\&+z^{\rho ^*}\sum _{i=1}^{\infty }{\frac{(-2\sqrt{z})^i}{i!}}\bigg [\pi ^{\frac{1}{2}} +\frac{M_1}{z^{\frac{1}{2}}}+\frac{M_2}{z^{\frac{1}{2}}}+...\bigg ]\bigg ], \end{aligned} \end{aligned}$$
(B12)

where

$$\begin{aligned} \begin{aligned} o(\chi ^t)=&\frac{A}{4}\displaystyle \sum _{k=1}^{\beta }a_k\frac{1}{(\sqrt{\zeta })^{\alpha +k-4}} \bigg [z^{\rho ^*}\bigg [\frac{M_1}{z^{\frac{1}{2}}}+\frac{M_2}{z^{\frac{1}{2}}}+...\bigg ]\\&+z^{\rho ^*}\sum _{i=1}^{\infty }{\frac{(-2\sqrt{z})^i}{i!}}\bigg [\pi ^{\frac{1}{2}} +\frac{M_1}{z^{\frac{1}{2}}}+\frac{M_2}{z^{\frac{1}{2}}}+...\bigg ]\bigg ], \end{aligned} \end{aligned}$$
(B13)

and

$$\begin{aligned} \begin{aligned} a\chi ^t= & \frac{A}{4}\displaystyle \sum _{k=1}^{\beta }a_k\frac{1}{(\sqrt{\zeta })^{\alpha +k-4}}z^{\rho ^*}\pi ^{\frac{1}{2}}\\= & \frac{A}{4}\displaystyle \sum _{k=1}^{\beta }a_k\frac{1}{(\sqrt{\zeta })^{\alpha +k-4}} (\zeta \sqrt{\chi })^{\frac{1}{2}[\alpha +k-\frac{9}{2}]}\pi ^{\frac{1}{2}}=\frac{A\pi ^{\frac{1}{2}}}{4\zeta ^{\frac{1}{4}}}\displaystyle \sum _{k=1}^{\beta }a_k\chi ^{\frac{1}{4}[\alpha +k-\frac{9}{2}]}, \end{aligned} \end{aligned}$$
(B14)

which eventually offers to obtain \(t=\frac{1}{4}[\alpha +k-\frac{9}{2}]\), \(a=\frac{A\pi ^{\frac{1}{2}}}{4\zeta ^{\frac{1}{4}}}a_k\) for only part of the summation in (B14).

Appendix C: Proof of Derivation of Average Channel Capacity

Derivation of the integral in (24) starts with the change of variables as \(x=\frac{\delta \gamma }{\kappa -\gamma \varrho }\), \(dx=\frac{\delta \kappa }{(\kappa -\gamma \varrho )^2}d_{\gamma }\) in that integral. Then, new parameters are substituted in (24) and it becomes as below by making some simple mathematical manipulations,

$$\begin{aligned} \frac{1}{(2\zeta )^{\frac{\alpha +k-4}{2}}}\int _{\gamma =0}^{\infty }ln \bigg (\frac{x(\varrho +\kappa )+\delta }{x\varrho +\delta }\bigg ) \bigg (2\sqrt{\zeta \sqrt{x}}\bigg )^{\alpha +k-4}K_{\alpha -k}\bigg (2\sqrt{\zeta \sqrt{x}}\bigg )dx. \end{aligned}$$
(C15)

The term \(\bigg (2\sqrt{\zeta \sqrt{x}}\bigg )^{\alpha +k-4}K_{\alpha -k}\bigg (2\sqrt{\zeta \sqrt{x}}\bigg )\) in (C15) can be expressed in terms of Meijer’s G-function [55, Section 2.6] and thus AVC becomes,

$$\begin{aligned} \frac{1}{2\zeta ^{\frac{\alpha +k-4}{2}}}\int _{x=0}^{\infty }ln \bigg (\frac{x(\varrho +\kappa )+\delta }{x\varrho +\delta }\bigg )G_{0,2}^{2,0} \bigg (\zeta \sqrt{x}\bigg | _{\alpha -2,\;\;k-2}\bigg )dx. \end{aligned}$$
(C16)

Using the partial integration by changing variables as \(u=ln\bigg (\frac{x(\varrho +\kappa )+\delta }{x\varrho +\delta }\bigg )\) and \(dv=G_{0,2}^{2,0}\bigg (\zeta \sqrt{x}\bigg | _{\alpha -2,\;\;k-2}\bigg )dx\) with \(du=\bigg (\frac{1}{x+\frac{\delta }{\kappa +\varrho }}-\frac{1}{x+\frac{\delta }{\varrho }}\bigg )dx\), \(v=G_{1,3}^{2,1}\bigg [\zeta \sqrt{x}\bigg |^{1,\;\; }_{\alpha -1,\;\;k-1,\;\;0\;\;}\bigg ]\) obtained based on [56], one can obtain the following equation,

$$\begin{aligned} \begin{aligned}&\int _{x=0}^{\infty }ln\bigg (\frac{x(\varrho +\kappa )+\delta }{x\varrho +\delta }\bigg )G_{0,2}^{2,0} \bigg (\zeta \sqrt{x}\bigg | _{\alpha -2,\;\;k-2}\bigg )dx=[uv]_{x=0}^{\infty }-\int _{x=0}^{\infty }vdu\\&=\bigg [ln\bigg (\frac{x(\varrho +\kappa )+\delta }{x\varrho +\delta }\bigg )G_{1,3}^{2,1}\bigg [\zeta \sqrt{x}\bigg |^{1,\;\; }_{\alpha -1,\;\;k-1,\;\;0\;\;}\bigg ]\bigg ]_{x=0}^{\infty }\\&\hspace{10pt}-\int _{x=0}^{\infty }G_{1,3}^{2,1}\bigg [\zeta \sqrt{x}\bigg |^{1,\;\; }_{\alpha -1,\;\;k-1,\;\;0\;\;}\bigg ] \bigg (\frac{1}{x+\frac{\delta }{\kappa +\varrho }}-\frac{1}{x+\frac{\delta }{\varrho }}\bigg )dx, \end{aligned} \end{aligned}$$
(C17)

where \([uv]_{x=0}^{\infty }=ln\bigg (1+\frac{\kappa }{\varrho }\bigg )G_{1,3}^{2,1} \bigg [\infty \bigg |^{1,\;\; }_{\alpha -1,\;\;k-1,\;\;0\;\;}\bigg ]\) and the term \(G_{1,3}^{2,1}\bigg [\infty \bigg |^{1,\;\; }_{\alpha -1,\;\;k-1,\;\;0\;\;}\bigg ]\) converges to zero when variable x goes to infinity. Therefore, \([uv]_{x=0}^{\infty }=ln\bigg (1+\frac{\kappa }{\varrho }\bigg )G_{1,3}^{2,1}\bigg [\infty \bigg |^{1,\;\; }_{\alpha -1,\;\;k-1,\;\;0\;\;}\bigg ]=0\). Another change of variables in (C17) as \(\beta _{1}=\frac{\delta }{\kappa +\varrho }\), \(\beta _{2}=\frac{\delta }{\varrho }\) can be helpful in simplification as follows,

$$\begin{aligned} \begin{aligned} \int _{x=0}^{\infty }vdu= & \int _{x=0}^{\infty }\frac{1}{x+\beta _{1}}G_{1,3}^{2,1} \bigg [\zeta \sqrt{x}\bigg |^{1,\;\; }_{\alpha -1,\;\;k-1,\;\;0\;\;}\bigg ]dx\\&-\int _{x=0}^{\infty }\frac{1}{x+\beta _{2}}G_{1,3}^{2,1} \bigg [\zeta \sqrt{x}\bigg |^{1,\;\; }_{\alpha -1,\;\;k-1,\;\;0\;\;}\bigg ]dx. \end{aligned} \end{aligned}$$
(C18)

Integral in [55, Eq. 3.3.5a] is as follows,

$$\begin{aligned} \begin{aligned}&\int _{x=0}^{\infty }x^{\sigma -1}(\omega +x)^{\psi -1}G_{p,q}^{m,n} \bigg [\zeta {x}^{\frac{s}{r}}\bigg |^{a_p}_{b_q}\bigg ]dx\\&=\frac{\omega ^{\psi +\sigma -1}}{\Gamma (1-\psi )}(2\pi )^{1-s+c^*(1-r)}r^Us^{-\psi } G_{pr+s,qr+s}^{mr+s,nr+s}\bigg [\frac{\zeta ^rr^{r(p-q)}}{\omega ^s}\bigg |^{\Delta (s,1-\sigma ), \Delta (r,a_p)}_{\Delta (s,1-\psi -\sigma ), \Delta (r,b_q)}\bigg ], \end{aligned} \end{aligned}$$
(C19)

where \(c^*=m+n-\frac{p}{2}-\frac{q}{2}\) and \(U=\displaystyle \sum _{j=1}^{q}b_j-\displaystyle \sum _{j=1}^{p}a_j+\frac{p}{2}-\frac{q}{2}+1\). \(\Delta (n,y)\) represents the set of n parameters [55, Page 70] \(\frac{y}{n}, \frac{y+1}{n},...,\frac{y+n-1}{n}\). When \(\sigma , \psi , s, r\) in [55, Eq. 3.3.5a] are selected as \(\sigma =1\), \(\psi =0\), \(s=1\), \(r=2\); then the both of integrals in (C18) can be put into form of integral in (C19).

When integral \(\int _{x=0}^{\infty }\frac{1}{x+\beta _{1}}G_{1,3}^{2,1}\bigg [\zeta \sqrt{x}\bigg |^{1,\;\; }_{\alpha -1,\;\;k-1,\;\;0\;\;}\bigg ]dx\) and integral [55, Eq. 3.3.5a] are compared, \(\sigma =1\), \(\omega =\beta _1\), \(\psi =0\), \(m=2\), \(n=1\), \(p=1\), \(\zeta =\zeta \), \(s=1\), \(r=2\), \(a_p=\{1\}\), \(b_q=\{\alpha -1, k-1, 0\}\). Based on this, \(c^*=1\), \(U=\alpha +k-3\), \(\Delta (r,a_p)=\Delta (2,\{1\})\) and \(\Delta (r,b_q)=\Delta (2,\{\alpha -1,k-1,0\})\).

Identity for \(\Delta (.)\) is given as \(\Delta (r,\{y_1, y_2,...,y_n\})\overset{\Delta }{=}\Delta (r,y_1), \Delta (r,y_2),...,\Delta (r,y_n)\) in [55, Page 117]. Based on that identity, \(\Delta (2,\{\alpha -1,k-1,0\})=\Delta (2,\alpha -1),\Delta (2,k-1),\Delta (2,0)\). Finally, expanded forms of \(\Delta (.)\)’s are written as \(\Delta (1,\{0\})=\{0\}\), \(\Delta (2,\{1\})=\{\frac{1}{2}, 1\} \), \(\Delta (2,\alpha -1)=\{\frac{\alpha -1}{2}, \frac{\alpha }{2}\}\), \(\Delta (2,k-1)=\{\frac{k-1}{2}, \frac{k}{2}\}\), \(\Delta (2,0)=\{0, \frac{1}{2}\}\). It is known that \(\Gamma (1)=1\). When all parameters and \(\Delta (.)\)’s are substituted into (C19), one of integrals can be rewritten as,

$$\begin{aligned} \begin{aligned}&\int _{x=0}^{\infty }\frac{1}{x+\beta _{1}}G_{1,3}^{2,1} \bigg [\zeta \sqrt{x}\bigg |^{1,\;\; }_{\alpha -1,\;\;k-1,\;\;0\;\;}\bigg ]dx\\&=\frac{2^{\alpha +k-4}}{\pi }G_{3,7}^{5,3} \bigg [\frac{\zeta ^2}{16\beta _1}\bigg |^{\{0, \frac{1}{2}, 1\},\{\}}_{\{0,\frac{\alpha -1}{2}, \frac{\alpha }{2}, \frac{k-1}{2}, \frac{k}{2}\}, \{0, \frac{1}{2}\}}\bigg ]. \end{aligned} \end{aligned}$$
(C20)

Result in (C20) is also valid for integral including \(\beta _2\) in (C18). Because, only different between integrals in (C18) is \(\beta _1\) and \(\beta _2\). Finally, when (C20) (i.e. \(\int _{x=0}^{\infty }vdu\)) is substituted into (C17), it can be rewritten as follows,

$$\begin{aligned} \begin{aligned} \frac{2^{\alpha +k-4}}{2\pi \zeta ^{\frac{\alpha +k-4}{2}}}\\ \times \bigg (G_{3,7}^{5,3}\bigg [\frac{\zeta ^2(\kappa +\varrho )}{16\delta }\bigg |^ {\{0, \frac{1}{2}, 1\},\{\}}_{\{0,\frac{\alpha -1}{2}, \frac{\alpha }{2}, \frac{k-1}{2}, \frac{k}{2}\}, \{0, \frac{1}{2}\}}\bigg ]-G_{3,7}^{5,3} \bigg [\frac{\zeta ^2\varrho }{16\delta }\bigg |^{\{0, \frac{1}{2}, 1\},\{\}}_{\{0,\frac{\alpha -1}{2}, \frac{\alpha }{2}, \frac{k-1}{2}, \frac{k}{2}\}, \{0, \frac{1}{2}\}}\bigg ]\bigg ). \end{aligned} \end{aligned}$$
(C21)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan, K., Gucluoglu, T. Performance Analysis of Downlink-NOMA Over Málaga Distributed Optical Links. Wireless Pers Commun 138, 1247–1271 (2024). https://doi.org/10.1007/s11277-024-11555-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11555-9

Keywords