Caching in Location Based Services: Approaches, Challenges and Emerging Trends | Wireless Personal Communications
Skip to main content

Caching in Location Based Services: Approaches, Challenges and Emerging Trends

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Location based service (LBS) is related basically to a local, continuous, and spatially confined computation in the context-aware mobile environment. Hitherto, serving a query within the specified timeline becomes possible with the help of caching the data at the client and/or server sites. It enhances the performance of LBSs by the reduction in the network traffic, access latency, server load etc.; however, at the same time, it faces difficulty in maintaining the database consistency as it works in the environment, where frequent disconnections occur. As a result, many fascinating LBS caching issues created in the mobile environment have forced the mobile database specialists and researchers to do extensive research efforts to improve the response time and efficient storage resources by developing the effective location-based technologies. Thus, this study specifically discusses the aforementioned issues with comparative analysis over the common attributes such as highlighting limitations/strength, recent advancement etc. and also possible research directions for the further investigation of the unanswered questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not Applicable.

References

  1. Mohammed, L., & Jaseemuddin, M. (Feb. 2023). Energy and latency efficient caching in Mobile Edge networks: Survey, solutions, and challenges. Wirel Pers Commun, 129, 1–35. https://doi.org/10.1007/s11277-023-10187-9.

  2. Gupta, A. K., & Shanker, U. (2020). Some Issues for Location Dependent Information System Query in Mobile Environment, in 29th ACM International Conference on Information and Knowledge Management (CIKM ’20), Virtual Event, Ireland: ACM, New York, NY, p. 4. doi:. https://doi.org/10.1145/3340531.3418504.

  3. Gupta, A. K., & Shanker, U. (2018). Location dependent information system’s queries for mobile environment, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), https://doi.org/10.1007/978-3-319-91455-8_19.

  4. Gupta, A. K., & Shanker, U. (2020). A literature review of location-aware computing policies: Taxonomy and empirical analysis in mobile environment. International Journal of Mobile Human Computer Interaction (IJMHCI), 12(3), 21–45. https://doi.org/10.4018/IJMHCI.2020070102.

  5. Takeuchi, Y., & Sugimoto, M. (2005). An Outdoor Recommendation System based on User Location History, CEUR Workshop Proc, vol. 149, pp. 91–100, Jan. https://doi.org/10.1007/11833529_64.

  6. Horozov, T., Narasimhan, N., & Vasudevan, V. (2006). Using location for personalized POI recommendations in mobile environments, in International Symposium on Applications and the Internet (SAINT’06), pp. 6 pp.– 129. https://doi.org/10.1109/SAINT.2006.55.

  7. Barbara, D. (1999). Mobile computing and databases-a survey. Ieee Transactions on Knowledge and Data Engineering, 11(1), 108–117. https://doi.org/10.1109/69.755619.

    Article  Google Scholar 

  8. Ben Sassi, I., Mellouli, S., & Ben Yahia, S. (2017). Context-aware recommender systems in mobile environment: On the road of future research. Inf Syst, 72, 27–61. https://doi.org/10.1016/j.is.2017.09.001.

    Article  Google Scholar 

  9. Gupta, A. K., & Kumar, S. (2023). DSPPTD: Dynamic scheme for privacy protection of trajectory data in LBS. In S. Pandey, U. Shanker, V. Saravanan, & R. Ramalingam (Eds.), Role of data-intensive distributed computing systems in designing data solutions. EAI/Springer innovations in communication and computing. Cham: Springer. https://doi.org/10.1007/978-3-031-15542-0_4.

  10. Ding, Z., Li, X., Jiang, C., & Zhou, M. (Jan. 2018). Objectives and State-of-the-Art of Location-Based Social Network Recommender Systems. ACM Comput Surv, 51, 1–28. https://doi.org/10.1145/3154526.

  11. Burbey, I., & Martin, T. L. (2012). A survey on predicting personal mobility, International Journal of Pervasive Computing and Communications, 8(1), 5–22, https://doi.org/10.1108/17427371211221063.

  12. Mittal, S. (Aug. 2016). A survey of recent prefetching techniques for Processor Caches. ACM Comput Surv, 49. https://doi.org/10.1145/2907071.

  13. Hartenstein, H., & Laberteaux, L. P. (2008). A tutorial survey on vehicular ad hoc networks. Ieee Communications Magazine, 46(6), 164–171. https://doi.org/10.1109/MCOM.2008.4539481.

    Article  Google Scholar 

  14. Chen, W., Guha, R. K., Kwon, T. J., Lee, J., & Hsu, I. Y. (2008). A survey and challenges in routing and data dissemination in vehicular ad-hoc networks, in IEEE International Conference on Vehicular Electronics and Safety, 2008, pp. 328–333. https://doi.org/10.1109/ICVES.2008.4640900.

  15. Truong, H. L., & Dustdar, S. (2009). A survey on context-aware web service systems, IJWIS, 5, 5–31, Apr. https://doi.org/10.1108/17440080910947295.

  16. Jeong, J., Lee, K., Abdikamalov, B., Lee, K., & Chong, S. (2016). TravelMiner: On the Benefit of Path-Based Mobility Prediction, 13th Annu. IEEE Int. Conf. Sensing, Commun. Netw. (SECON), LONDON, UK, vol. 13, no. June, pp. 1–9, 2016, https://doi.org/10.1109/SAHCN.2016.7733023.

  17. Schroeder, B., Harchol-Balter, M., Iyengar, A., & Nahum, E. (2006). Achieving Class-Based QoS for Transactional Workloads, vol. 2006. https://doi.org/10.1109/ICDE.2006.11.

  18. Kjærgaard, M., Jensen, J., Godsk, T., & Toftkjær, T. (2009). EnTracked: Energy-efficient robust position tracking for mobile devices. https://doi.org/10.1145/1555816.1555839.

  19. Ravi, N., Scott, J., Han, L., & Iftode, L. (2008). Context-aware Battery Management for Mobile Phones. https://doi.org/10.1109/PERCOM.2008.108.

    Article  Google Scholar 

  20. Rslan, E., Abdelhameed, H., & Ezzat, E. (2018). An efficient hybridized index technique for moving object database. Spat Inf Res, 26(5), 551–561. https://doi.org/10.1007/s41324-018-0198-7.

    Article  Google Scholar 

  21. Ilarri, S., Mena, E., & Illarramendi, A. (2010). Location-dependent query processing: Where we are and where we are heading., ACM Comput. Surv, vol. 42, Jan.

  22. Simon, R., & Fröhlich, P. (2007). A mobile application framework for the geospatial web. Proc 16th Int Conf World Wide Web - WWW ’07, 381–390. https://doi.org/10.1145/1242572.1242624.

  23. Zhang, G., Liu, L., Seshadri, S., Bamba, B., & Wang, Y. (2009). Scalable and Reliable Location Services through Decentralized Replication. https://doi.org/10.1109/ICWS.2009.57.

    Article  Google Scholar 

  24. Wu, S., & Wu, K. T. (2003). Dynamic data management for location based services in mobile environments, in Seventh International Database Engineering and Applications Symposium, Proceedings., 2003, pp. 180–189. https://doi.org/10.1109/IDEAS.2003.1214925.

  25. Gupta, A. K., & Shanker, U. (2020). Study of fuzzy logic and particle swarm methods in map matching algorithm. SN Applied Sciences, 2, 608. https://doi.org/10.1007/s42452-020-2431-y.

  26. Gupta, A. K. (2020). Spam mail filtering using data mining approach: A comparative performance analysis. In U. Shanker & S. Pandey (Eds.), handling priority inversion in time-constrained distributed databases (pp. 253–282). IGI Global https://doi.org/10.4018/978-1-7998-2491-6.ch015

  27. Zheng, B., Xu, J., Member, S., & Lee, D. L. (2002). Cache invalidation and replacement strategies for location-dependent data in Mobile environments, IEEE Transactions on Computers, 51(1), 1141–1153.

  28. Gupta, A. K., & Shanker, U. (2019). SPMC-PRRP: A Predicted Region Based Cache Replacement Policy, in Advances in Data and Information Sciences, vol. 39. https://doi.org/10.1007/978-981-13-0277-0_26.

  29. Gupta, A. K., & Shanker, U. (2020). CEMP-IR: A Novel Location Aware Cache Invalidation & Replacement Policy, Int. J. Comput. Sci. Eng, 1.

  30. Acharya, S., Alonso, R., Franklin, M., & Zdonik, S. (1996). Broadcast Disks: Data Management for Asymmetric Communication Environments BT - Mobile Computing,T. Imielinski, & H. F. Korth (Eds.), Boston, MA: Springer US, pp. 331–361. https://doi.org/10.1007/978-0-585-29603-6_12.

  31. Acharya, S., Franklin, M., & Zdonik, S. (1996). Prefetching from a broadcast disk, in Proceedings of the Twelfth International Conference on Data Engineering, pp. 276–285. https://doi.org/10.1109/ICDE.1996.492116.

  32. Khanna, S., & Liberatore, V. (1998). On Broadcast Disk Paging, in Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, in STOC ’98. New York, NY, USA: Association for Computing Machinery, pp. 634–643. https://doi.org/10.1145/276698.276879.

  33. Xu, J., Hu, Q., Lee, W. C., & Lee, D. L. (2004). Performance evaluation of an optimal cache replacement policy for wireless data dissemination. Ieee Transactions on Knowledge and Data Engineering, 16(1), 125–139. https://doi.org/10.1109/TKDE.2004.1264827.

    Article  Google Scholar 

  34. He, T., Yin, H., Chen, Z., Zhou, X., Sadiq, S., & Luo, B. (Jul. 2016). A spatial-temporal topic model for the semantic annotation of POIs in LBSNs. ACM Trans Intell Syst Technol, 8(1). https://doi.org/10.1145/2905373.

  35. Michael (1996). Semantic Data Caching and Replacement, Proc. 22th Int. Conf. Very Large Data Bases, Morgan Kaufmann Publ. Inc. San Fr. CA, USA, vol. 22, no. 4, pp. 333–341, 10.1.1.45.683.

  36. Lai, K. Y., Tari, Z., & Bertok, P. (2004). Location-aware cache replacement for mobile environments, Glob. Telecommun. Conf. GLOBECOM ’04. IEEE, Dallas, Texas USA, vol. 6, no. November, pp. 3441–3447, https://doi.org/10.1109/GLOCOM.2004.1379006.

  37. Ren, Q., & Dunham, M. H. (2000). Using Semantic Caching to Manage Location Dependent Data in Mobile Computing, in 6th ACM/IEEE Mobile Computing and Networking (MobiCom), Boston, MA, USA, Boston, USA, pp. 210–221.

  38. Kumar, A., Misra, M., & Sarje, A. K. (2006). A Predicted Region Based Cache Replacement Policy for Location Dependent Data in Mobile Environment, in International Conference on Wireless Communications, Networking and Mobile Computing, 2006, pp. 1–4. https://doi.org/10.1109/WiCOM.2006.405.

  39. Kumar, A., Misra, M., & Sarje, A. K. (2008). A Predicted Region based Cache Replacement Policy for Location Dependent Data in Mobile Environment, 10th Inter-Research-Institute Student Semin. Comput. Sci. IIIT Hyderabad, vol. 7, no. February, pp. 1–8.

  40. Gupta, A. K., & Shanker, U. (2018). Modified predicted region based cache replacement policy for location-dependent data in mobile environment. In Procedia Computer Science. https://doi.org/10.1016/j.procs.2017.12.117.

    Article  Google Scholar 

  41. Gupta, A. K., & Shanker, U. (2018). SPMC-CRP:A cache replacement policy for location Dependent Data in Mobile Environment. In Procedia Computer Science. https://doi.org/10.1016/j.procs.2017.12.081.

    Article  Google Scholar 

  42. Gupta, A. K., & Shanker, U. (2021). Mobility Markov chain and matrix-based location-aware cache replacement policy in mobile environment: MMCM-CRP. International Journal of Software Innovation (IJSI), 9(4), 88–106. https://doi.org/10.4018/IJSI.289171.

  43. Yu, T., Guo, C., Wang, L., Gu, H., Xiang, S., & Pan, C. (2018). Joint spatial-temporal attention for action recognition. Pattern Recognition Letters, 112, 226–233. https://doi.org/10.1016/j.patrec.2018.07.034.

    Article  Google Scholar 

  44. Gupta, A. K., Shanker, U., & CELPB. (2018).: A cache invalidation policy for location dependent data in mobile environment, in ACM International Conference Proceeding Series, https://doi.org/10.1145/3216122.3216147.

  45. Barbará, D., & Imieliński, T. (1995). Sleepers and workaholics: Caching strategies in mobile environments (extended version). The Vldb Journal, 4(4), 567–602. https://doi.org/10.1007/BF01354876.

    Article  Google Scholar 

  46. Madhukar, A., & Alhajj, R. (2006). An adaptive energy efficient cache invalidation scheme for mobile databases, vol. 2. https://doi.org/10.1145/1141277.1141545.

  47. Cao, G. (2003). A scalable low-latency cache invalidation strategy for mobile environments. Ieee Transactions on Knowledge and Data Engineering, 15(5), 1251–1265. https://doi.org/10.1109/TKDE.2003.1232276.

    Article  Google Scholar 

  48. Nguyen, T. T. M., & Dong, T. T. B. (2011). An adaptive cache consistency strategy in a disconnected mobile wireless network, in IEEE International Conference on Computer Science and Automation Engineering, 2011, pp. 256–260. https://doi.org/10.1109/CSAE.2011.5952846.

  49. Kumar, A., Misra, M., & Sarje, A. K. (2007). A Weighted Cache Replacement Policy for Location Dependent Data in Mobile Environments, SAC ’07 Proc. ACM Symp. Appl. Comput. Seoul, Repub. Korea, vol. 7, no. March, pp. 920–924, 2007, https://doi.org/10.1145/1244002.1244204.

  50. Xu, J., Tang, X., & Lee, D. L. (2003). Performance analysis of location-dependent cache invalidation schemes for mobile environments. Ieee Transactions on Knowledge and Data Engineering, 15(2), 474–488. https://doi.org/10.1109/TKDE.2003.1185846.

    Article  Google Scholar 

  51. O’Rourke, J. (1994). Computational geometry in C (2nd ed., p. 51600285). Cambridge University Press,.

  52. Kumar, A., Misra, M., & Sarje, A. K. (2005 Int). Strategies for cache invalidation of location dependent data in mobile environment, Pdpta `05 ProcConf. Parallel Distrib. Process. Tech. Appl. Las Vegas, Nevada, USA, vol. 1–3, no. Ldd, pp. 38–44.

  53. Al-Molegi, A., Jabreel, M., & Martínez-Ballesté, A. (2018). Move, Attend and Predict: An attention-based neural model for people’s movement prediction, Pattern Recognit. Lett, vol. 112, pp. 34–40, https://doi.org/10.1016/j.patrec.2018.05.015.

  54. Feiertag, R. J., & Organick, E. I. (1971). The Multics Input/Output System, in Proceedings of the Third ACM Symposium on Operating Systems Principles, in SOSP ’71. New York, NY, USA: Association for Computing Machinery, pp. 35–41. https://doi.org/10.1145/800212.806497.

  55. Chen, P. (1996). Optimizing delay in delayed-write file systems, pp. 1–12, [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi%3D10.1.1.74.4487&rep%3Drep1&type%3Dpdf

  56. Padmanabhan, V., & Mogul, J. (Feb. 1999). Using Predictive Prefetching to improve world wide web latency. ACM SIGCOMM Comput Commun Rev, 26. https://doi.org/10.1145/235160.235164.

  57. Jiang, Z., & Kleinrock, L. (1998). Web prefetching in a mobile environment. Ieee Personal Communications, 5(5), 25–34. https://doi.org/10.1109/98.729720.

    Article  Google Scholar 

  58. Domènech, J., Pont, A., Sahuquillo, J., & Gil, J. A. (2007). A user-focused evaluation of web prefetching algorithms. Computer Communications, 30(10), 2213–2224. https://doi.org/10.1016/j.comcom.2007.05.003.

    Article  Google Scholar 

  59. Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D., & Zelenka, J. (1995). Informed Prefetching and Caching, in Proceedings of the Fifteenth ACM Symposium on Operating Systems Principles, in SOSP ’95. New York, NY, USA: Association for Computing Machinery, pp. 79–95. https://doi.org/10.1145/224056.224064.

  60. Fitzek, F. H. P., & Reisslein, M. (2001). A prefetching protocol for continuous media streaming in wireless environments. Ieee Journal on Selected Areas in Communications, 19(10), 2015–2028. https://doi.org/10.1109/49.957315.

    Article  Google Scholar 

  61. Bagchi, S. (Mar. 2011). A fuzzy algorithm for dynamically adaptive Multimedia Streaming. ACM Trans Multimed Comput Commun Appl, 7(2). https://doi.org/10.1145/1925101.1925106.

  62. Liu, G. (2020). May, Exploitation of Location-dependent caching and prefetching techniques for supporting Mobile Computing and communications.

  63. Tait, C., Lei, H., Acharya, S., & Chang, H. (2001). Intelligent file Hoarding for Mobile computers. Sep. https://doi.org/10.1145/215530.215564.

    Article  Google Scholar 

  64. Kistler, J. J., & Satyanarayanan, M. (1996). In T. Imielinski, & H. F. Korth (Eds.), Disconnected operation in the Coda file System BT - Mobile Computing (pp. 507–535). Springer US. https://doi.org/10.1007/978-0-585-29603-6_19.

  65. de Nitto, V., Personè, V., Grassi, & Morlupi, A. (1998). Modeling and Evaluation of Prefetching Policies for Context-Aware Information Services, in Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking, in MobiCom ’98. New York, NY, USA: Association for Computing Machinery, pp. 55–65. https://doi.org/10.1145/288235.288249.

  66. Lee, D. L., Xu, J., Zheng, B., & Lee, W. C. (2002). Data management in location-dependent information services. Ieee Pervasive Computing, 1(3), 65–72. https://doi.org/10.1109/MPRV.2002.1037724.

    Article  Google Scholar 

  67. Nicholson, A., & Noble, B. (2008). BreadCrumbs: Forecasting mobile connectivity. https://doi.org/10.1145/1409944.1409952.

  68. Cao, G. (2002). Proactive power-aware cache management for mobile computing systems, Comput. IEEE Trans, vol. 51, pp. 608–621, Jul. https://doi.org/10.1109/TC.2002.1009147.

  69. Ye, T., Jacobsen, H. A., & Katz, R. (1998). Mobile Awareness in a Wide Area Wireless Network of Info-Stations, in Proceedings of the 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking, in MobiCom ’98. New York, NY, USA: Association for Computing Machinery, pp. 109–120. https://doi.org/10.1145/288235.288264.

  70. Xu, J., Liu, J., Li, B., & Jia, X. (2004). Caching and prefetching for web content distribution. Computer Science & Engineering: An International Journal, 6(4), 54–59. https://doi.org/10.1109/MCSE.2004.5.

    Article  Google Scholar 

  71. Markatos, E., & Chronaki, C. (2000). A Top-10 Approach to prefetching on the web. Jul.

  72. Duchamp, D. (1999). Prefetching Hyperlinks, in Proceedings of the 2nd Conference on USENIX Symposium on Internet Technologies and Systems - Volume 2, in USITS’99. USA: USENIX Association, p. 12.

  73. Dandapat, S. K., Jain, S., Ganguly, N., & Chodhury, R. R. (2012). Distributed content storage for just-in-time streaming. Comput Commun Rev, 42(4), 77–78. https://doi.org/10.1145/2377677.2377689.

    Article  Google Scholar 

  74. Deshpande, P., Kashyap, A., Sung, C., & Das, S. R. (2009). Predictive Methods for Improved Vehicular WiFi Access, in Proceedings of the 7th International Conference on Mobile Systems, Applications, and Services, in MobiSys ’09. New York, NY, USA: Association for Computing Machinery, pp. 263–276. https://doi.org/10.1145/1555816.1555843.

  75. Kim, M., Kotz, D., & Kim, S. (2006). Extracting a Mobility Model from Real User Traces, in Proceedings IEEE INFOCOM 25TH IEEE International Conference on Computer Communications, 2006, pp. 1–13. https://doi.org/10.1109/INFOCOM.2006.173.

  76. Yoon, J., Noble, B., Liu, M., & Kim, M. (2006). Building Realistic Mobility Models from Coarse-grained Traces. https://doi.org/10.1145/1134680.1134699.

  77. Evensen, K. (2011). Mobile Video Streaming Using Location-Based Network Prediction and Transparent Handover. https://doi.org/10.1145/1989240.1989248.

  78. Riiser, H., Endestad, T., Vigmostad, P., Griwodz, C., & Halvorsen, P. (Jan. 2011). Video streaming using a location-based bandwidth-Lookup Service for Bitrate Planning. ACM Trans Multimed Comput Commun Appl - TOMCCAP, 8. https://doi.org/10.1145/2240136.2240137.

  79. Singh, V., Ott, J., & Curcio, I. D. D. (2012). Predictive buffering for streaming video in 3G networks, in 2012 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–10. https://doi.org/10.1109/WoWMoM.2012.6263710.

  80. Liang, B., & Haas, Z. J. (2003). Predictive distance-based mobility management for multidimensional PCS networks. Ieee/Acm Transactions on Networking: A Joint Publication of the Ieee Communications Society, the Ieee Computer Society, and the Acm with Its Special Interest Group On Data Communication, 11(5), 718–732. https://doi.org/10.1109/TNET.2003.815301.

    Article  Google Scholar 

  81. Akyildiz, I. F., & Wang, W. (2004). The predictive user mobility profile framework for wireless multimedia networks. Ieee/Acm Transactions on Networking: A Joint Publication of the Ieee Communications Society, the Ieee Computer Society, and the Acm with Its Special Interest Group On Data Communication, 12, 1021–1035. https://doi.org/10.1109/TNET.2004.838604.

    Article  Google Scholar 

  82. Yao, J., Kanhere, S., & Hassan, M. (2010). Quality Improvement of Mobile Video Using Geo-Intelligent Rate Adaptation. https://doi.org/10.1109/WCNC.2010.5506187.

  83. Yao, J., Kanhere, S., & Hassan, M. (2008). An empirical study of bandwidth predictability in mobile computing. https://doi.org/10.1145/1410077.1410081.

  84. Hummer, W., Schulte, S., Hoenisch, P., & Dustdar, S. (2014). Context-Aware Data Prefetching in Mobile Service Environments, in IEEE Fourth International Conference on Big Data and Cloud Computing, 2014, pp. 214–221. https://doi.org/10.1109/BDCloud.2014.104.

  85. Ghosh, J., Ngo, H., & Qiao, C. (2006). Mobility profile based routing within intermittently connected mobile ad hoc networks (ICMAN), vol. 2006. https://doi.org/10.1145/1143549.1143659.

  86. Balasubramanian, A., Mahajan, R., & Venkataramani, A. (2010). Augmenting mobile 3G using WiFi. https://doi.org/10.1145/1814433.1814456.

  87. Siris, V. A., & Kalyvas, D. (2012). Enhancing Mobile Data Offloading with Mobility Prediction and Prefetching, in Proceedings of the Seventh ACM International Workshop on Mobility in the Evolving Internet Architecture, in MobiArch ’12. New York, NY, USA: Association for Computing Machinery, pp. 17–22. https://doi.org/10.1145/2348676.2348682.

  88. Imai, N., Morikawa, H., & Aoyama, T. (2001). Prefetching architecture for hot-spotted networks, in ICC IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240), 2001, pp. 2006–2010 vol.7. https://doi.org/10.1109/ICC.2001.936941.

  89. Weber, B. (2010). Mobile Map browsers: Anticipated user Interaction for Data Pre-fetching. Dec.

  90. Yeşilmurat, S. (Jul. 2012). Retrospective adaptive prefetching for interactive web GIS applications. Geoinformatica, 16, 435–466. https://doi.org/10.1007/s10707-011-0141-8.

  91. Beqqali, O. E., Laurini, R., Said, E. G., Omar, E. B., & Robert, L. (2009). Jan., Data prefetching Algorithm in Mobile environments, 28, 3, pp. 478–491.

  92. yu Fang, C. J., Jiang, & Zhang, Z. H. (2006). A mobile navigation service platform based on traffic information grid, Int. J. Serv. Oper. Informatics, vol. 1, pp. 23–37, Jan. https://doi.org/10.1504/IJSOI.2006.010187.

  93. Wang, X., Pang, X., & Luo, Y. (2010). LBS-p: A LBS Platform Supporting Online Map Services, in IEEE 72nd Vehicular Technology Conference - Fall, 2010, pp. 1–5. https://doi.org/10.1109/VETECF.2010.5594114.

  94. Fang, Y., Jiang, C., & Fu, Y. (2008). Incremental Data Prefetching for Map Service in Mobile Navigation Application, in 4th International Conference on Wireless Communications, Networking and Mobile Computing, 2008, pp. 1–4. https://doi.org/10.1109/WiCom.2008.1345.

  95. Kang, S. W., Im, S., Kim, J., Lee, S., & Hwang, C. S. (2006). Considering a Semantic Prefetching Scheme for Cache Management in Location-Based Services, vol. 4251. https://doi.org/10.1007/11892960_139.

  96. Lien, C. C., & Wang, C. C. (2006). An Effective Prefetching Technique for Location-Based Services with PPM, vol. 2006. https://doi.org/10.2991/jcis.2006.221.

  97. Chen, X. (2005). Techniques of data prefetching, replication, and consistency in the internet. College of William & Mary.

  98. Zhang, X., Cao, D., Tian, G., & Chen, X. (2008). Data Prefetching Driven by User Preference and Global Coordination for Mobile Environments. https://doi.org/10.1109/GPC.WORKSHOPS.2008.35.

  99. Gob, A., Schreiber, D., Hamdi, L., Aitenbichler, E., & Muhlhauser, M. (2009). Reducing User Perceived Latency with a Middleware for Mobile SOA Access, in IEEE International Conference on Web Services, 2009, pp. 366–373. https://doi.org/10.1109/ICWS.2009.86.

  100. Liu, X., & Deters, R. (2007). An efficient dual caching strategy for web service-enabled PDAs. https://doi.org/10.1145/1244002.1244178.

  101. Qaiser, M., Bodorik, P., & Jutla, D. (2011). Differential Caches for Web Services in Mobile Environments. https://doi.org/10.1109/ICWS.2011.50.

  102. Armstrong, N. D. R., & Ward, P. A. S. (2013). Just-In-Time Push Prefetching: Accelerating the Mobile Web. BT– 27th IEEE International Conference on Advanced Information Networking and Applications, AINA Barcelona, Spain, March 25–28, 2013. pp. 1064–1071. https://doi.org/10.1109/AINA.2013.145.

  103. Parate, A., Böhmer, M., Chu, D., Ganesan, D., & Marlin, B. M. (2013). Practical Prediction and Prefetch for Faster Access to Applications on Mobile Phones, in Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, in UbiComp ’13. New York, NY, USA: Association for Computing Machinery, pp. 275–284. https://doi.org/10.1145/2493432.2493490.

  104. Higgins, B. D., Flinn, J., Giuli, T. J., Noble, B., Peplin, C., & Watson, D. (2012). Informed Mobile Prefetching, in Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, in MobiSys ’12. New York, NY, USA: Association for Computing Machinery, pp. 155–168. https://doi.org/10.1145/2307636.2307651.

  105. Eriksson, J., Balakrishnan, H., & Madden, S. (2008). Cabernet: vehicular content delivery using WiFi, in MobiCom ’08.

  106. Wu, S., Hsu, J., & Chen, C. M. (2009). Headlight Prefetching and Dynamic Chaining for Cooperative Media Streaming in Mobile Environments, Mob. Comput. IEEE Trans, vol. 8, pp. 173–187, Mar. https://doi.org/10.1109/TMC.2008.104.

  107. Papageorgiou, A., Miede, A., Schulte, S., Schuller, D., & Steinmetz, R. (2014). Decision support for web service adaptation. Pervasive and Mobile Computing, 12, 197–213. https://doi.org/10.1016/j.pmcj.2013.10.004.

    Article  Google Scholar 

  108. Gavalas, D., & Kenteris, M. (2011). A web-based pervasive recommendation system for mobile tourist guides, Pers. Ubiquitous Comput, vol. 15, pp. 759–770, Oct. https://doi.org/10.1007/s00779-011-0389-x.

  109. Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, in GIS ’08. New York, NY, USA: Association for Computing Machinery, 2008. doi: 10.1145/1463434.1463477.

  110. Giannotti, F., & Nanni, M. (2007) Trajectory pattern mining, Discov. Data Min, doi: 10.1145/1281192.1281230.

  111. Zheng, Y., Zhang, L., Ma, Z., Xie, X., & Ma, W. Y. (2011). Recommending friends and locations based on individual location history, ACM Trans. Web, ACM New York, NY, USA, vol. 5, no. 1, pp. 1–44, https://doi.org/10.1145/1921591.1921596.

  112. Lara, Ó. D., Pérez, A. J., Labrador, M. A., & Posada, J. D. (2012). Centinela: A human activity recognition system based on acceleration and vital sign data. Pervasive and Mobile Computing, 8(5), 717–729. https://doi.org/10.1016/j.pmcj.2011.06.004.

    Article  Google Scholar 

  113. Gidófalvi, G., & Dong, F. (2012). When And Where Next: Individual Mobility Prediction, Proc. First ACM SIGSPATIAL Int. Work. Mob. Geogr. Inf. Syst. - MobiGIS ’12, no. c, p. 57, https://doi.org/10.1145/2442810.2442821.

  114. Mohd Shariff, A. A., Katuk, N., & Zakaria, N. H. (2017). An overview to pre-fetching techniques for content caching of mobile applications. J Telecommun Electron Comput Eng, 9, 2–12.

    Google Scholar 

  115. Silva, F., Boukerche, A., Loureiro, A., Braga, T., Ruiz, L., & Cerqueira, E. (2016). Vehicular Networks: A New Challenge for Content-Delivery-Based Applications, ACM Comput. Surv, vol. 49, Sep. https://doi.org/10.1145/2903745.

  116. Gupta, A. K., & Shanker, U. (2023). A predicted region enrooted approach for efficient caching in mobile environment. Journal of Information Science and Engineering, 39(1), 111–127. https://doi.org/10.6688/JISE.202301_39(1).0007

  117. Mehamel, S., Bouzefrane, S., Banarjee, S., Daoui, M., & Balas, V. (2020). Modified reinforcement learning based- caching system for mobile edge computing, Intell. Decis. Technol, vol. 14, pp. 1–16, Dec. https://doi.org/10.3233/IDT-190152.

  118. Chen, G., Sun, J., Zeng, Q., Jing, G., & Zhang, Y. (May 2023). Joint Edge Computing and Caching based on D3QN for the Internet of vehicles. Electronics, 12, 2311. https://doi.org/10.3390/electronics12102311.

  119. Zhong, C., Gursoy, M. C., & Velipasalar, S. (Jan. 2020). Deep reinforcement learning based Edge Caching in Wireless Networks. IEEE Trans Cogn Commun Netw, PP, 1. https://doi.org/10.1109/TCCN.2020.2968326.

  120. Gupta, A. K., & Shanker, U. (2021). Prediction and anticipation features-based intellectual assistant in location-based services. International Journal of System Dynamics Applications (IJSDA), 10(4), 1–25. https://doi.org/10.4018/IJSDA.20211001.oa4.

  121. Gupta, A. K., & Shanker, U. (2021). Mobility-Aware prefetching and replacement scheme for location-based services: MOPAR. In P. Saravanan & S. Balasundaram (Eds.), Privacy and security challenges in location aware computing (pp. 26–51). IGI Global. https://doi.org/10.4018/978-1-7998-7756-1.ch002.

  122. Gupta, A. K., & Shanker, U. (2021). An efficient Markov chain model development based prefetching in location-based services. In P. Saravanan & S. Balasundaram (Eds.), Privacy and security challenges in location aware computing (pp. 109–125). IGI Global. https://doi.org/10.4018/978-1-7998-7756-1.ch005

  123. Thilliez, M., Delot, T., & Lecomte, S. (2005). An Original Positioning Solution to Evaluate Location-Dependent Queries in Wireless Environments, J. Digit. Inf. Manag. - Spec. Issue Distrib. Data Manag, vol. 3, no. 2, p. 108, [Online]. Available: http://www.dirf.org/jdim/v3n210.pdf.

  124. Zhu, X., Zhu, G., & Guan, P. (2013). Exploring Location-Aware Process Management BT - Geo-Informatics in Resource Management and sustainable ecosystem. In F. Bian, Y. Xie, X. Cui, & Y. Zeng (Eds.), in Geo-Informatics in Resource Management and sustainable ecosystem (pp. 249–256). Springer.

  125. Liang, T. Y., & Li, Y. J. (2017). A location-aware service deployment algorithm based on k-means for cloudlets, Mob. Inf. Syst, vol. no. January, pp. 10–21, 2017, https://doi.org/10.1155/2017/8342859.

  126. Swaroop, V., & Shanker, U. (2011). Concept and Management issues in Mobile distributed Real Time database. Int J Recent Trends Electr Electron Eng, 1(1), 31–42.

    Google Scholar 

  127. Hasan, A. S. M. T., Jiang, Q., & Li, C. (Oct. 2017). An effective grouping method for privacy-preserving Bike sharing Data Publishing. Futur Internet, 9, 65. https://doi.org/10.3390/fi9040065.

  128. Hu, H., Sun, Z., Liu, R., & Yang, X. (2019). Privacy Implication of Location-Based Service: Multi-Class Stochastic User Equilibrium and Incentive Mechanism, Transp. Res. Rec, vol. 2673, no. 12, pp. 256–265, Jul. https://doi.org/10.1177/0361198119859322.

  129. Gupta, A. K., & Prakash, S. (2018). Secure communication in cluster-based ad Hoc networks: A review. In D. K. Lobiyal, V. Mansotra, & U. Singh (Eds.), Advances in Intelligent systems and Computing (pp. 537–545). Springer Singapore.

  130. Shen, H., Bai, G., Yang, M., & Wang, Z. (2017). Protecting trajectory privacy: A user-centric analysis. J Netw Comput Appl, 82, 128–139. https://doi.org/10.1016/j.jnca.2017.01.018.

    Article  Google Scholar 

  131. Li, X., Zhu, Y., Wang, J., Liu, Z., Liu, Y., & Zhang, M. (2018). On the soundness and security of privacy-preserving SVM for Outsourcing Data classification. Ieee Transactions on Dependable and Secure Computing, 15(5), 906–912. https://doi.org/10.1109/TDSC.2017.2682244.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of CSE, M. M. M. University of Technology, Gorakhpur, India for the necessary facilities to conduct this review work.

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Contributions

AK Gupta contributed to original draft preparation, the analysis, and designed the figures. U Shanker discussed the overall structure and made comments on the manuscript.

Corresponding author

Correspondence to Ajay K. Gupta.

Ethics declarations

Ethics approval and consent to participate

Not Applicable.

Competing interests

In writing this survey paper, the author(s) certify that there is no conflict-of-interest case.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Shanker, U. Caching in Location Based Services: Approaches, Challenges and Emerging Trends. Wireless Pers Commun 135, 1581–1615 (2024). https://doi.org/10.1007/s11277-024-11132-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11132-0

Keywords