Abstract
A printed ultra-wideband antenna that provides wide bandwidth of 2.6–10.58 GHz, with sharp triple notches at 3.3–3.92, 5.1–5.4 and 5.68–6.02 GHz to eliminate the WiMAX and WLAN interferences, is proposed. Triple notches are implemented by embedding split ring shaped slot and unique circular split ring resonator pairs in the antenna. The antenna provides monopole like radiation patterns with gain variation of 2.5–5 dBi and average radiation efficiency of 86% in its pass band. Wide bandwidth of the antenna makes it well suited in low depth subsurface scanning ground penetrating radar (GPR) applications where better lateral resolution is desired. To improve the depth resolution, the antenna is integrated with reflective type frequency selective surfaces. Overall gain augmentation of 3 dBi with maximum gain increment of nearly 6 dBi at 5.5 GHz is achieved by adding the FSS. The antenna-FSS composite structure provides impedance band of 2.52–10.66 GHz with triple notches at 3.26–3.84, 5.1–5.38 and 5.66–5.95 GHz. Performance of the composite structure is evaluated in close proximity of sandy soil test bed by keeping thin aluminium sheet at the bottom of sand. Adequate VSWR, transfer function and group delay responses ensure the eligibility of proposed antenna to work for GPR.
Similar content being viewed by others
References
Buynevich, I. V., Jol, H. M., Fitz Gerald, D. M. (2009). Coastal environments. In: H. M. Jol (Eds.), Ground penetrating radar: Theory and applications (pp. 299–322). Oxford: Elsevier.
Congedo, F., Monti, G., Tarricone, L. (2010) “Modified bowtie antenna for GPR applications,”In: Proc. IEEE 13th International Conference of Ground Penetrating Radar (GPR), pp. 1–5.
Lestari, A. A., Yarovoy, A. G., & Ligthart, L. P. (2004). RC-loaded bow-tie antenna for improved pulse radiation. IEEE Transactions on Antennas and Propagation, 52(10), 2555–2563.
Zheng, G., Elsherbeni, A. Z., Smith, C. E. (2002). “A coplanar waveguide bow-tie aperture antenna,” in Proceeding of IEEE Antennas and Propagation Society International Symposium (AP-S), vol. 1, pp. 564–567.
Scheers, B. (2001). “Ultra-wideband ground penetrating radar, with application to the detection of anti personnel landmines,” Ph.D. Dissertation, Universite Catholique de Louvain Laboratoire D’Hyperfrequences Louvain-la-Neuve, Belgium.
Liu, H., Zhao, J., & Sato, M. (2015). A hybrid dual-polarization GPR system for detection of linear objects. IEEE Antennas Wireless Propag. Lett., 14, 317–320.
Kim, S. H., Wen, L., Ko, H. W., & Ahn, B. C. (2005). A technique for broadbanding the CPW-fed bow-tie slot antenna. Journal of electromagnetic engineering and science, 5(1), 14–20.
Mehdipour, A., Mohammadpour-Aghdam, K., Faraji-Dana, R., & Sebak, A. R. (2008). Modified slot bow-tie antenna for UWB applications. Microwave and Optical Technology Letters, 50(2), 429–432.
Daniels, D. J. (2004). Ground Penetrating Radar (2nd ed.). London: IET Press.
Shao, J., Fang, G., Fan, J., Ji, Y., & Yin, H. (2014). TEM horn antenna loaded with absorbing material for GPR applications. IEEE Antennas and Wireless Propagation Letters, 13, 523–527.
Jonard, F., Weihermüller, L., Schwank, M., Jadoon, K. Z., Vereecken, H., & Lambot, S. (2015). “Estimation of hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing. IEEE transactions on geoscience and remote sensing, 53(6), 3095–3109.
Fu, L., Liu, S., Liu, L., & Lei, L. (2014). Development of an airborne ground penetrating radar system: antenna design, laboratory experiment, and numerical simulation. IEEE Journal of selected topics in applied Earth observations and remote sensing, 7(3), 761–766.
Li, M., Birken, R., Sun, N. X., & Wang, M. L. (2016). Compact slot antenna with low dispersion for ground penetrating radar application. IEEE Antennas and Wireless Propagation Letters, 15, 638–641.
Ahmed, A., Zhang, Y., Burns, D., Huston, D., & Xia, T. (2016). Design of UWB antenna for air-coupled impulse ground-penetrating radar. IEEE Geoscience and Remote Sensing Letters, 13(1), 92–96.
Guo, J., Tong, J., Zhao, Q., Jiao, J., Huo, J., & Ma, C. (2019). An ultrawide band antipodal Vivaldi antenna for airborne GPR application. IEEE Geoscience and Remote Sensing Letters, 16(10), 1560–1564.
Yektakhah, B., Chiu, J., Alsallum, F., & Sarabandi, K. (2019). Low-Profile, Low-Frequency, UWB Antenna for Imaging of Deeply Buried Targets. IEEE Geoscience and Remote Sensing Letters, 17(7), 1168–1172.
Sarabandi, K., Buerkle, A. M., & Mosallaei, H. (2006). Compact Wideband UHF Patch Antenna on a Reactive Impedance Substrate. IEEE Antennas and Wireless Propagation Letters, 5, 503–506.
Yang, W., Wang, H., Che, W., & Wang, J. (2013). A Wideband and High-Gain Edge-Fed Patch Antenna and Array Using Artificial Magnetic Conductor Structures. IEEE Antennas and Wireless Propagation Letters, 12, 769–772.
Kushwaha, N., & Kumar, R. (2016). Design of a wideband high gain antenna using FSS for circularly polarized applications. AEU-International Journal of Electronics and Communications, 70(9), 1156–1163.
Chatterjee, A., & Parui, S. K. (2017). Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface. IEEE Transactions on Antennas and Propagation, 65(5), 2233–2239.
Das, P., & Mandal, K. (2019). Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna. IET Microwaves, Antennas and Propagation, 13(3), 269–277.
Abdulhasan, R. A., Alias, R., Ramli, K. N., Seman, F. C., & Abd-Alhameed, R. A. (2019). High gain CPW-fed UWB planar monopole antenna-based compact uniplanar frequency selective surface for microwave imaging. The International Journal of RF and Microwave Computer-Aided Engineering, 29(8), e21757.
Hong, S., Shin, J., Park, H., & Choi, J. (2007). Analysis of the band-stop techniques for ultra wideband antenna. Microwave and Optical Technology Letters, 49(5), 1058–1062.
Kim, Y., & Kwon, D. H. (2004). CPW-fed planar ultra wideband antenna having a frequency band notch function. Electronics Letters, 40(7), 403–405.
Ojaroudi, M., Ghobadi, C., & Nourinia, J. (2009). Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application. IEEE Antennas and Wireless Propagation Letters, 8, 728–731.
Duroc, Y., Ghiotto, A., Vuong, T. P., Tedjini, S. (2009). “On the characterization of UWB antennas,” The International Journal of RF and Microwave Computer-Aided Engineering: Co-sponsored by the Center for Advanced Manufacturing and Packaging of Microwave, Optical, and Digital Electronics (CAMPmode) at the University of Colorado at Boulder, 19(2), 258–69.
Wu, S. J., Kang, C. H., Chen, K. H., & Tarng, J. H. (2010). Study of an ultra wideband monopole antenna with a band-notched open-looped resonator. IEEE Transactions on Antennas and Propagation, 58(6), 1890–1897.
Kundu, S. (2018). Balloon-shaped CPW fed printed UWB antenna with dual frequency notch to eliminate WiMAX and WLAN interferences. Microwave and Optical Technology Letters, 60(7), 1744–1750.
Emadian, S. R., & Ahmadi-Shokouh, J. (2018). Study on frequency and time domain properties of novel triple band notched UWB antenna in indoor propagation channel. The International Journal of RF and Microwave Computer-Aided Engineering, 28(9), e21428.
Singh, H. S., & Kalraiya, S. (2018). Design and analysis of a compact WiMAX and WLAN band notched planar monopole antenna for UWB and bluetooth applications. The International Journal of RF and Microwave Computer-Aided Engineering, 28(9), e21432.
Iqbal, A., Bouazizi, A., Kundu, S., Elfergani, I., & Rodriguez, J. (2019). Dielectric resonator antenna with top loaded parasitic strip elements for dual-band operation. Microwave and Optical Technology Letters, 61(9), 2134–2140.
Srifi, M. N., Podilchak, S. K., Essaaidi, M., & Antar, Y. M. (2011). Compact disc monopole antennas for current and future ultrawideband (UWB) applications. IEEE Transactions on Antennas and Propagation, 59(12), 4470–4480.
CST Microwave Studio Suite, 2017. [Online] Available: www.cst.com.
Terman, F. E. (1943). Radio Engineers’ Handbook, 1steded. New York and London: McGraw-Hill.
Muramoto, M., Ishii, N., & Itoh, K. (1996). Radiation efficiency measurement of a small antenna using the wheeler method. Electronics and Communications in Japan (Part I: Communications), 79(6), 93–100.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kundu, S., Chatterjee, A. Sharp Triple-Notched Ultra Wideband Antenna with Gain Augmentation Using FSS for Ground Penetrating Radar. Wireless Pers Commun 117, 1399–1418 (2021). https://doi.org/10.1007/s11277-020-07928-5
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-020-07928-5