Sharp Triple-Notched Ultra Wideband Antenna with Gain Augmentation Using FSS for Ground Penetrating Radar | Wireless Personal Communications Skip to main content
Log in

Sharp Triple-Notched Ultra Wideband Antenna with Gain Augmentation Using FSS for Ground Penetrating Radar

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A printed ultra-wideband antenna that provides wide bandwidth of 2.6–10.58 GHz, with sharp triple notches at 3.3–3.92, 5.1–5.4 and 5.68–6.02 GHz to eliminate the WiMAX and WLAN interferences, is proposed. Triple notches are implemented by embedding split ring shaped slot and unique circular split ring resonator pairs in the antenna. The antenna provides monopole like radiation patterns with gain variation of 2.5–5 dBi and average radiation efficiency of 86% in its pass band. Wide bandwidth of the antenna makes it well suited in low depth subsurface scanning ground penetrating radar (GPR) applications where better lateral resolution is desired. To improve the depth resolution, the antenna is integrated with reflective type frequency selective surfaces. Overall gain augmentation of 3 dBi with maximum gain increment of nearly 6 dBi at 5.5 GHz is achieved by adding the FSS. The antenna-FSS composite structure provides impedance band of 2.52–10.66 GHz with triple notches at 3.26–3.84, 5.1–5.38 and 5.66–5.95 GHz. Performance of the composite structure is evaluated in close proximity of sandy soil test bed by keeping thin aluminium sheet at the bottom of sand. Adequate VSWR, transfer function and group delay responses ensure the eligibility of proposed antenna to work for GPR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Buynevich, I. V., Jol, H. M., Fitz Gerald, D. M. (2009). Coastal environments. In: H. M. Jol (Eds.), Ground penetrating radar: Theory and applications (pp. 299–322). Oxford: Elsevier.

  2. Congedo, F., Monti, G., Tarricone, L. (2010) “Modified bowtie antenna for GPR applications,”In: Proc. IEEE 13th International Conference of Ground Penetrating Radar (GPR), pp. 1–5.

  3. Lestari, A. A., Yarovoy, A. G., & Ligthart, L. P. (2004). RC-loaded bow-tie antenna for improved pulse radiation. IEEE Transactions on Antennas and Propagation, 52(10), 2555–2563.

    Article  Google Scholar 

  4. Zheng, G., Elsherbeni, A. Z., Smith, C. E. (2002). “A coplanar waveguide bow-tie aperture antenna,” in Proceeding of IEEE Antennas and Propagation Society International Symposium (AP-S), vol. 1, pp. 564–567.

  5. Scheers, B. (2001). “Ultra-wideband ground penetrating radar, with application to the detection of anti personnel landmines,” Ph.D. Dissertation, Universite Catholique de Louvain Laboratoire D’Hyperfrequences Louvain-la-Neuve, Belgium.

  6. Liu, H., Zhao, J., & Sato, M. (2015). A hybrid dual-polarization GPR system for detection of linear objects. IEEE Antennas Wireless Propag. Lett., 14, 317–320.

    Article  Google Scholar 

  7. Kim, S. H., Wen, L., Ko, H. W., & Ahn, B. C. (2005). A technique for broadbanding the CPW-fed bow-tie slot antenna. Journal of electromagnetic engineering and science, 5(1), 14–20.

    Google Scholar 

  8. Mehdipour, A., Mohammadpour-Aghdam, K., Faraji-Dana, R., & Sebak, A. R. (2008). Modified slot bow-tie antenna for UWB applications. Microwave and Optical Technology Letters, 50(2), 429–432.

    Article  Google Scholar 

  9. Daniels, D. J. (2004). Ground Penetrating Radar (2nd ed.). London: IET Press.

    Book  Google Scholar 

  10. Shao, J., Fang, G., Fan, J., Ji, Y., & Yin, H. (2014). TEM horn antenna loaded with absorbing material for GPR applications. IEEE Antennas and Wireless Propagation Letters, 13, 523–527.

    Article  Google Scholar 

  11. Jonard, F., Weihermüller, L., Schwank, M., Jadoon, K. Z., Vereecken, H., & Lambot, S. (2015). “Estimation of hydraulic properties of a sandy soil using ground-based active and passive microwave remote sensing. IEEE transactions on geoscience and remote sensing, 53(6), 3095–3109.

    Article  Google Scholar 

  12. Fu, L., Liu, S., Liu, L., & Lei, L. (2014). Development of an airborne ground penetrating radar system: antenna design, laboratory experiment, and numerical simulation. IEEE Journal of selected topics in applied Earth observations and remote sensing, 7(3), 761–766.

    Article  Google Scholar 

  13. Li, M., Birken, R., Sun, N. X., & Wang, M. L. (2016). Compact slot antenna with low dispersion for ground penetrating radar application. IEEE Antennas and Wireless Propagation Letters, 15, 638–641.

    Article  Google Scholar 

  14. Ahmed, A., Zhang, Y., Burns, D., Huston, D., & Xia, T. (2016). Design of UWB antenna for air-coupled impulse ground-penetrating radar. IEEE Geoscience and Remote Sensing Letters, 13(1), 92–96.

    Article  Google Scholar 

  15. Guo, J., Tong, J., Zhao, Q., Jiao, J., Huo, J., & Ma, C. (2019). An ultrawide band antipodal Vivaldi antenna for airborne GPR application. IEEE Geoscience and Remote Sensing Letters, 16(10), 1560–1564.

    Article  Google Scholar 

  16. Yektakhah, B., Chiu, J., Alsallum, F., & Sarabandi, K. (2019). Low-Profile, Low-Frequency, UWB Antenna for Imaging of Deeply Buried Targets. IEEE Geoscience and Remote Sensing Letters, 17(7), 1168–1172.

    Article  Google Scholar 

  17. Sarabandi, K., Buerkle, A. M., & Mosallaei, H. (2006). Compact Wideband UHF Patch Antenna on a Reactive Impedance Substrate. IEEE Antennas and Wireless Propagation Letters, 5, 503–506.

    Article  Google Scholar 

  18. Yang, W., Wang, H., Che, W., & Wang, J. (2013). A Wideband and High-Gain Edge-Fed Patch Antenna and Array Using Artificial Magnetic Conductor Structures. IEEE Antennas and Wireless Propagation Letters, 12, 769–772.

    Article  Google Scholar 

  19. Kushwaha, N., & Kumar, R. (2016). Design of a wideband high gain antenna using FSS for circularly polarized applications. AEU-International Journal of Electronics and Communications, 70(9), 1156–1163.

    Article  Google Scholar 

  20. Chatterjee, A., & Parui, S. K. (2017). Frequency-dependent directive radiation of monopole-dielectric resonator antenna using a conformal frequency selective surface. IEEE Transactions on Antennas and Propagation, 65(5), 2233–2239.

    Article  Google Scholar 

  21. Das, P., & Mandal, K. (2019). Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna. IET Microwaves, Antennas and Propagation, 13(3), 269–277.

    Article  Google Scholar 

  22. Abdulhasan, R. A., Alias, R., Ramli, K. N., Seman, F. C., & Abd-Alhameed, R. A. (2019). High gain CPW-fed UWB planar monopole antenna-based compact uniplanar frequency selective surface for microwave imaging. The International Journal of RF and Microwave Computer-Aided Engineering, 29(8), e21757.

    Article  Google Scholar 

  23. Hong, S., Shin, J., Park, H., & Choi, J. (2007). Analysis of the band-stop techniques for ultra wideband antenna. Microwave and Optical Technology Letters, 49(5), 1058–1062.

    Article  Google Scholar 

  24. Kim, Y., & Kwon, D. H. (2004). CPW-fed planar ultra wideband antenna having a frequency band notch function. Electronics Letters, 40(7), 403–405.

    Article  Google Scholar 

  25. Ojaroudi, M., Ghobadi, C., & Nourinia, J. (2009). Small square monopole antenna with inverted T-shaped notch in the ground plane for UWB application. IEEE Antennas and Wireless Propagation Letters, 8, 728–731.

    Article  Google Scholar 

  26. Duroc, Y., Ghiotto, A., Vuong, T. P., Tedjini, S. (2009). “On the characterization of UWB antennas,” The International Journal of RF and Microwave Computer-Aided Engineering: Co-sponsored by the Center for Advanced Manufacturing and Packaging of Microwave, Optical, and Digital Electronics (CAMPmode) at the University of Colorado at Boulder, 19(2), 258–69.

  27. Wu, S. J., Kang, C. H., Chen, K. H., & Tarng, J. H. (2010). Study of an ultra wideband monopole antenna with a band-notched open-looped resonator. IEEE Transactions on Antennas and Propagation, 58(6), 1890–1897.

    Article  Google Scholar 

  28. Kundu, S. (2018). Balloon-shaped CPW fed printed UWB antenna with dual frequency notch to eliminate WiMAX and WLAN interferences. Microwave and Optical Technology Letters, 60(7), 1744–1750.

    Article  Google Scholar 

  29. Emadian, S. R., & Ahmadi-Shokouh, J. (2018). Study on frequency and time domain properties of novel triple band notched UWB antenna in indoor propagation channel. The International Journal of RF and Microwave Computer-Aided Engineering, 28(9), e21428.

    Article  Google Scholar 

  30. Singh, H. S., & Kalraiya, S. (2018). Design and analysis of a compact WiMAX and WLAN band notched planar monopole antenna for UWB and bluetooth applications. The International Journal of RF and Microwave Computer-Aided Engineering, 28(9), e21432.

    Article  Google Scholar 

  31. Iqbal, A., Bouazizi, A., Kundu, S., Elfergani, I., & Rodriguez, J. (2019). Dielectric resonator antenna with top loaded parasitic strip elements for dual-band operation. Microwave and Optical Technology Letters, 61(9), 2134–2140.

    Article  Google Scholar 

  32. Srifi, M. N., Podilchak, S. K., Essaaidi, M., & Antar, Y. M. (2011). Compact disc monopole antennas for current and future ultrawideband (UWB) applications. IEEE Transactions on Antennas and Propagation, 59(12), 4470–4480.

    Article  Google Scholar 

  33. CST Microwave Studio Suite, 2017. [Online] Available: www.cst.com.

  34. Terman, F. E. (1943). Radio Engineers’ Handbook, 1steded. New York and London: McGraw-Hill.

    Google Scholar 

  35. Muramoto, M., Ishii, N., & Itoh, K. (1996). Radiation efficiency measurement of a small antenna using the wheeler method. Electronics and Communications in Japan (Part I: Communications), 79(6), 93–100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Kundu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Chatterjee, A. Sharp Triple-Notched Ultra Wideband Antenna with Gain Augmentation Using FSS for Ground Penetrating Radar. Wireless Pers Commun 117, 1399–1418 (2021). https://doi.org/10.1007/s11277-020-07928-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07928-5

Keywords

Navigation