Hexagonal Ring Shaped Dual Band Antenna Using Staircase Fractal Geometry For Wireless Applications | Wireless Personal Communications Skip to main content
Log in

Hexagonal Ring Shaped Dual Band Antenna Using Staircase Fractal Geometry For Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A design of hexagonal ring-shaped antenna along with staircase fractal geometry for different wideband wireless applications presented in this paper. Space-filling property of fractal has been used to design the proposed antenna with 50 Ω transmission line feed for improved impedance matching and wider bandwidth. The overall dimension of the designed antenna is 3670.4 mm3, FR4 glass epoxy material is used as a substrate with a thickness 1.6 mm and dielectric constant of value 4.4. The antenna adorns the impedance bandwidth (S11 < − 10 dB) of 7.74 GHz (1.86–9.60 GHz) with a maximum gain of 6.99 dB. Various performance parameters of the proposed antenna such as gain, radiation efficiency, and radiation pattern are observed and all these are in the acceptable range for different wireless standards. The design of the proposed optimized antenna is physically fabricated and tested for the justification/comparison of simulated and experimental results and both are found close to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Anguera, J., Andujar, A., Huynh, M. C., Orlenius, C., Picher, C., & Puente, C. (2013). Advances in antenna technology for wireless handheld devices. International Journal of Antennas and Propagation,83(64), 1–25.

    Article  Google Scholar 

  2. Li, L., Zhang, X., Yin, X., & Zhou, L. (2016). Compact triple-band printed monopole antenna for WLAN/WiMAX applications. IEEE Antennas Wireless Propagation Letter,15, 1853–1855.

    Article  Google Scholar 

  3. Abutarboush, H. F., Nasif, H., Nilavalan, R., & Cheung, W. (2012). Multiband and wideband monopole antenna for GSM900 and other wireless applications. IEEE Antennas Wireless Propagation Letter,11, 539–542.

    Article  Google Scholar 

  4. Pei, J., Wang, A. G., Gao, S., & Leng, W. (2011). Miniaturized triple-band antenna with a defected ground plane for WLAN/WiMAX applications. IEEE Antennas Wireless Propagation Letter,10, 98–301.

    Google Scholar 

  5. Augustin, G., Bybi, P. C., Sarin, V. P., Mohanan, P., Aanandan, C. K., & Vasudevan, K. (2008). A compact dual-band planar antenna for DCS-1900/PCS/PHS, WCDMA/IMT-2000, and WLAN applications. IEEE Antennas Wireless Propagation Letter,7, 108–111.

    Article  Google Scholar 

  6. Liu, W. X., Yin, Y. Z., & Xu, W. L. (2012). Compact self similar triple band antenna for WLAN/WiMAX applications. Microwave and Optical Technology Letter,54(4), 1084–1087.

    Article  Google Scholar 

  7. Bhatia, S. S., Sahni, S., & Rana, S. B. (2018). A novel design of compact monopole antenna with defected ground plane for wideband applications. Progress In Electromagnetics Research M,70, 21–31.

    Google Scholar 

  8. Gupta, M., & Mathur, V. (2017). Wheel shaped modified fractal antenna realization for wireless communications. International Journal of Electronics and Communications (AEU),79, 257–266.

    Article  Google Scholar 

  9. Wrener, D. H., & Gangualy, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine,45(1), 35–57.

    Google Scholar 

  10. Rajeshkumar, V., & Raghavan, S. (2014). Trapezodial ring quad band fractal antenna for WLAN/WIMAX applications. Microwave and Optical Technology Letter,56(11), 2545–2548.

    Article  Google Scholar 

  11. Sharma, N., & Bhatia, S. S. (2018). Split ring resonator based multiband hybrid fractal antennas for wireless applications. International Journal of Electronics and Communications (AEU),93, 39–52.

    Article  Google Scholar 

  12. Borja, C., & Romeu, J. (2003). On the behavior of Koch island fractal boundary microstrip patch antenna. IEEE Transactions on Antennas Propagation,51, 1281–1291.

    Article  Google Scholar 

  13. Gianvittorio, J. P., & Samii, Y. R. (2002). Fractal antennas: A novel antenna miniaturization technique and applications. IEEE Antennas Propagation Magazine,44, 20–36.

    Article  Google Scholar 

  14. Hwang, K. C. (2007). A modified Sierpinski fractal antenna for multiband application. IEEE Antennas Wireless Propagation Letter,6, 357–360.

    Article  Google Scholar 

  15. Sharma, N., Sharma, V., & Bhatia, S. S. (2018). A novel hybrid fractal antenna for wireless applications. Progress In Electromagnetics Research M,73, 25–35.

    Google Scholar 

  16. Sharma, N., Singh, J., & Sharma, V. (2016). Design of hexagonal Meander fractal antenna for multiband applications. International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE). https://doi.org/10.1109/ICMETE.2016.17.

    Article  Google Scholar 

  17. Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-International Journal of Electronics and Communications,99, 14–24.

    Article  Google Scholar 

  18. Kaur, M., & Sivia, J. S. (2019). Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. The International Journal of RF and Microwave Computer-Aided Engineering. https://doi.org/10.1002/mmce.22000.

    Article  Google Scholar 

  19. Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using Meander and Minkowski curves for wireless applications. Wireless Personal Communications,109, 1471–1490.

    Article  Google Scholar 

  20. Bangi, I. S., & Sivia, J. S. (2019). Moore, Minkowski and koch curves based hybrid fractal antenna for multiband applications. Wireless PersCommun,108, 2435–2448.

    Article  Google Scholar 

  21. Sidhu, A. K., & Sivia, J. S. (2018). A novel design of wideband Koch like sided Sierpinski square carpet multifractal antenna. Applied Computational Electromagnetics Society Journal,33(8), 873–879.

    Google Scholar 

  22. Bangi, I. S., & Sivia, J. S. (2018). Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications. AEU-International Journal of Electronics and Communications,85, 159–168.

    Article  Google Scholar 

  23. Kaur, K., & Sivia, J. S. (2017). A compact hybrid multiband antenna for wireless applications. International Journal of Wireless personal communication,97(4), 5917–5927.

    Article  Google Scholar 

  24. Sivia, J. S., Kaur, G., & Sarao, A. K. (2017). A Modified Sierpinski carpet fractal antenna for multiband applications. International journal of Wireless personal communication,93, 4269–4279.

    Article  Google Scholar 

  25. Bhatia, S. S., Sivia, J. S., & Sharma, N. (2018). An optimal design of fractal antenna with modified ground structure for wideband applications. Wireless Personal Communication,103(3), 1977–1991.

    Article  Google Scholar 

  26. Kiran, D. V., Sankaranarayanan, D., & Mukherjee, B. (2017). Compact embedded dual-element rectangular dielectric resonator antenna combining Sierpinski and Minkowski fractals. IEEE Transactions on Components, Packaging and Manufacturing Technology,7(5), 786–791.

    Article  Google Scholar 

  27. Sankaranarayanan, D., Venkatakiran, D., & Mukherjee, B. (2016). A novel compact fractal ring based cylindrical dielectric resonator antenna for ultra-wideband applications. Progress In Electromagnetics Research C,67, 71–83.

    Article  Google Scholar 

  28. Gupta, S., Kshirsagar, P., & Mukherjee, B. (2018). Sierpinski fractal inspired inverted pyramidal DRA for wide band applications. Electromagnetics, Taylor & Francis,38(2), 103–112.

    Google Scholar 

  29. Mitra, D., Das, D., & BhadraChaudhuri, S. R. (2012). Bandwidth enhancement of microstrip line and CPW- fed asymmetrical slot antennas. Progress In Electromagnetic Research,32, 69–79.

    Article  Google Scholar 

  30. Ray, K. P., Thakur, S. S., & Deshmukh, R. A. (2012). Wideband L-shaped printed monopole antenna. International Journal of Electronics and Communications (AEU),66, 693–696.

    Article  Google Scholar 

  31. Omar, S. A., Iqbal, A., Saraereh, O. A., & Basir, A. (2017). An array of M—shaped Vivaldi antennas for UWB applications. Progress In Electromagnetics Research,68, 67–72.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navjot Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Singh, J. & Kumar, M. Hexagonal Ring Shaped Dual Band Antenna Using Staircase Fractal Geometry For Wireless Applications. Wireless Pers Commun 113, 2067–2078 (2020). https://doi.org/10.1007/s11277-020-07307-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07307-0

Keywords

Navigation