A Compact Broadband High Gain Antenna Using Slotted Inverted Omega Shape Ground Plane and Tuning Stub Loaded Radiator | Wireless Personal Communications Skip to main content
Log in

A Compact Broadband High Gain Antenna Using Slotted Inverted Omega Shape Ground Plane and Tuning Stub Loaded Radiator

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A new compact broadband and high gain antenna by using the slotted inverted omega shaped ground plane and circular disc loaded radiator is presented. The designed antenna prototype is engraved on low cost thick substrate with compact electrical size of (0.201\(\lambda \times 0.16\lambda \times 0.01001\lambda\)) \(\hbox {mm}^3\) at 2 GHz frequency. Several prototypes have been designed and investigated to achieve the proper matching. The parametric study is conducted to attain an optimized prototype of antenna. The novelty lies in proposed antenna’s simple structure with compact dimensions of radiator. It exhibits the peak realized gain of 9.93 dBi at 19.9 GHz, broadband fractional impedance bandwidth of 142.6% at 10 dB return loss, and stable radiation pattern across all the frequency sweeps. The antenna have been simulated, fabricated and tested. Moreover, frequency and time domain performance have been analyzed to validate the antenna design. Finally the comparison analysis with the state of the art existing work has been conducted. The simulated and tested results are in good agreement hence make the antenna suitable for UWB (3.1–10.6 GHz), WiMAX (3.5–5.8 GHz), C (4–8 GHz), H (6–8 GHz), X (8–12 GHz), Ku (12–18 GHz), Ka (18–26 GHz) and future wireless communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhang, R., Liang, Y. C., Hall, P. S. P., Gardner, P., Kelly, J., Ebrahimi, E., et al. (2009). Federal Communications Commission revision of Part 15 of the commission’s rules regarding ultra-wideband transmission systems. FCC, Washington, DC, first report & order. (Vol. 48, no. 1, pp. 133–135). https://doi.org/10.1109/APS.2013.6711000.

  2. Verbiest, J. R., & Vandenbosch, G. A. E. (2006). A novel small-size printed tapered monopole antenna for UWB WBAN. IEEE Antennas and Wireless Propagation Letters, 5(1), 377–379. https://doi.org/10.1109/LAWP.2006.881920.

    Article  Google Scholar 

  3. Lin, C. C., Kan, Y. C., Kuo, L. C., & Chuang, H. R. (2005). A planar triangular monopole antenna for UWB communication. IEEE Microwave and Wireless Components Letters, 15(10), 624–626. https://doi.org/10.1109/LMWC.2005.856694.

    Article  Google Scholar 

  4. Chair, R., Kishk, A. A., & Lee, K. F. (2004). Ultrawide-band coplanar waveguide-fed rectangular slot antenna. IEEE Antennas and Wireless Propagation Letters, 3(1), 227–229. https://doi.org/10.1109/LAWP.2004.836580.

    Article  Google Scholar 

  5. Chen, H. D. (2003). Broadband CPW-fed square slot antennas with a widened tuning stub. IEEE Transactions on Antennas and Propagation, 51(8), 1982–1986. https://doi.org/10.1109/TAP.2003.814747.

    Article  Google Scholar 

  6. Lee, H.-L., Lee, H.-J., Yook, J.-G., & Park, H.-K. (2003). Broadband planar antenna having round corner rectangular wide slot (pp. 460–463). https://doi.org/10.1109/aps.2002.1016122.

  7. Liang, X. L., Denidni, T. A., Zhang, L. N., Jin, R. H., Geng, J. P., & Yu, Q. (2011). Printed binomial-curved slot antennas for various wideband applications. IEEE Transactions on Microwave Theory and Techniques, 59(2), 1058–1065. https://doi.org/10.1109/TMTT.2011.2113990.

    Article  Google Scholar 

  8. Jan, J. Y., & Su, J. W. (2005). Bandwidth enhancement of a printed wide-slot antenna with a rotated slot. IEEE Transactions on Antennas and Propagation, 53(6), 2111–2114. https://doi.org/10.1109/TAP.2005.848518.

    Article  Google Scholar 

  9. Li, P., Liang, J., & Chen, X. (2006). Study of printed elliptical/circular slot antennas for ultrawideband applications. IEEE Transactions on Antennas and Propagation, 54(6), 1670–1675. https://doi.org/10.1109/TAP.2006.875499.

    Article  Google Scholar 

  10. Dastranj, A., & Abiri, H. (2010). Bandwidth enhancement of printed E-shaped slot antennas fed by CPW and microstrip line. IEEE Transactions on Antennas and Propagation, 58(4), 1402–1407. https://doi.org/10.1109/TAP.2010.2041164.

    Article  Google Scholar 

  11. Sung, Y. (2012). Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch. IEEE Transactions on Antennas and Propagation, 60(4), 1712–1716. https://doi.org/10.1109/TAP.2012.2186224.

    Article  Google Scholar 

  12. Sze, J. Y., Hsu, C. I. G., & Hsu, S. C. (2007). Design of a compact dual-band annular-ring slot antenna. IEEE Antennas and Wireless Propagation Letters, 6, 423–426. https://doi.org/10.1109/LAWP.2007.902053.

    Article  Google Scholar 

  13. Koohestani, M., Moghadasi, M. N., & Virdee, B. S. (2011). Miniature microstrip-fed ultra-wideband printed monopole antenna with a partial ground plane structure. IET Microwaves, Antennas and Propagation, 5(14), 1683. https://doi.org/10.1049/iet-map.2010.0450.

    Article  Google Scholar 

  14. Manohar, M., Kshetrimayum, R. S., & Gogoi, A. K. (2014). A compact printed triangular monopole antenna for ultrawideband applications. Microwave and Optical Technology Letters, 56(5), 1155–1159. https://doi.org/10.1002/mop.28290.

    Article  Google Scholar 

  15. Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2004). Printed circular disc monopole antenna for ultra-wideband applications. Electronics Letters, 40(20), 1246. https://doi.org/10.1049/el:20045966.

    Article  Google Scholar 

  16. Man, M. Y., Yang, R., Lei, Z. Y., Xie, Y. J., & Fan, J. (2012). Ultra-wideband planar inverted-F antennas with cut-etched ground plane. Electronics Letters, 48(14), 817. https://doi.org/10.1049/el.2012.1042.

    Article  Google Scholar 

  17. Liu, Y. F., Lau, K. L., Xue, Q., & Chan, C. H. (2004). Experimental studies of printed wide-slot antenna for wide-band applications. IEEE Antennas and Wireless Propagation Letters, 3(1), 273–275. https://doi.org/10.1109/LAWP.2004.837510.

    Article  Google Scholar 

  18. Addaci, R., & Fortaki, T. (2016). Miniature low profile UWB antenna: New techniques for bandwidth enhancement and radiation pattern stability. Microwave and Optical Technology Letters, 58(8), 1808–1813. https://doi.org/10.1002/mop.29907.

    Article  Google Scholar 

  19. Ram Krishna, R. V. S., & Kumar, R. (2015). Slotted ground microstrip antenna with FSS reflector for high-gain horizontal polarisation. Electronics Letters, 51(8), 599–600. https://doi.org/10.1049/el.2015.0339.

    Article  Google Scholar 

  20. Liu, W. X., Yin, Y. Z., Xu, W. L., & Zuo, S. L. (2011). Compact open-slot antenna with bandwidth enhancement. IEEE Antennas and Wireless Propagation Letters, 10, 850–853. https://doi.org/10.1109/LAWP.2011.2165197.

    Article  Google Scholar 

  21. Eskandari, H., Booket, M. R., Kamyab, M., & Veysi, M. (2010). Investigations on a class of wideband printed slot antenna. IEEE Antennas and Wireless Propagation Letters, 9, 1221–1224. https://doi.org/10.1109/LAWP.2010.2100360.

    Article  Google Scholar 

  22. Sze, J.-Y., & Wong, K.-L. (2001). Bandwidth enhancement of a microstrip-line-fed printed wide-slot antenna. IEEE Transactions on Antennas and Propagation, 49(7), 1020–1024. https://doi.org/10.1109/8.933480.

    Article  Google Scholar 

  23. Chen, W. S., & Lin, C. H. (2009). A planar hybrid antenna for UWB application. Microwave and Optical Technology Letters, 51(5), 1243–1246. https://doi.org/10.1002/mop.24328.

    Article  Google Scholar 

  24. Jacob, K. F., Suma, M. N., Raj, R. K., Joseph, M., & Mohanan, P. (2007). Planar branched monopole antenna for UWB applications. Microwave and Optical Technology Letters, 49(1), 45–47. https://doi.org/10.1002/mop.22045.

    Article  Google Scholar 

  25. Hossain, M. J., Faruque, M. R. I., & Islam, M. T. (2016). Design of a patch antenna for ultra wide band applications. Microwave and Optical Technology Letters, 58(9), 2152–2156. https://doi.org/10.1002/mop.29993.

    Article  Google Scholar 

  26. Yoon, C., Kim, W. S., Kang, S. Y., Lee, H. C., & Park, H. D. (2011). Printed monopole antenna on a thin substrate for UWB applications. Microwave and Optical Technology Letters, 53(6), 1262–1264. https://doi.org/10.1002/mop.25964.

    Article  Google Scholar 

  27. Xu, K., Zhu, Z., Li, H., Huangfu, J., Li, C., & Ran, L. (2013). A printed single-layer UWB monopole antenna with extended ground plane stubs. IEEE Antennas and Wireless Propagation Letters, 12, 237–240. https://doi.org/10.1109/LAWP.2013.2247555.

    Article  Google Scholar 

  28. Tang, M. C., Shi, T., & Ziolkowski, R. W. (2016). Planar ultrawideband antennas with improved realized gain performance. IEEE Transactions on Antennas and Propagation, 64(1), 61–69. https://doi.org/10.1109/TAP.2015.2503732.

    Article  MathSciNet  MATH  Google Scholar 

  29. Soothar, P., Wang, H., Muneer, B., Dayo, Z. A., & Chowdhry, B. S. (2019). A broadband high gain tapered slot antenna for underwater communication in microwave band. Wireless Personal Communications,. https://doi.org/10.1007/s11277-019-06633-2.

    Article  Google Scholar 

  30. Dastranj, A., & Bahmanzadeh, F. (2018). A compact Uwb antenna design using rounded inverted l-shaped slots and beveled asymmetrical patch. Progress In Electromagnetics Research C, 80, 131–140. https://doi.org/10.2528/pierc17111702.

    Article  Google Scholar 

  31. Sahoo, S., Mishra, L. P., Mohanty, M. N., & Mishra, R. K. (2018). Design of compact UWB monopole planar antenna with modified partial ground plane. Microwave and Optical Technology Letters, 60(3), 578–583. https://doi.org/10.1002/mop.31010.

    Article  Google Scholar 

  32. Saha, T. K., Goodbody, C., Karacolak, T., & Sekhar, P. K. (2019). A compact monopole antenna for ultra-wideband applications. Microwave and Optical Technology Letters, 61(1), 182–186. https://doi.org/10.1002/mop.31519.

    Article  Google Scholar 

  33. Zhai, H., Yang, D., Xi, L., & Feng, D. (2018). A new CPW-fed broadband circularly polarized printed monopole antenna for UWB application. Microwave and Optical Technology Letters, 60(2), 364–369. https://doi.org/10.1002/mop.30972.

    Article  Google Scholar 

  34. Meng, L., Wang, W., Su, M., Gao, J., & Liu, Y. (2017). Bandwidth extension of a printed square monopole antenna loaded with periodic parallel-plate lines. International Journal of Antennas and Propagation, 2017, 1–10. https://doi.org/10.1155/2017/4082780.

    Article  Google Scholar 

  35. Li, K., Dong, T., & Xia, Z. (2019). Wideband printed wide-slot antenna with fork-shaped stub. Electronics, 8(3), 347. https://doi.org/10.3390/electronics8030347.

    Article  Google Scholar 

  36. Dayo, Z. A., Cao, Q., Soothar, P., Lodro, M. M., & Li, Y. (2019). A compact coplanar waveguide feed bow-tie slot antenna for WIMAX, C and X band applications. In 2019 IEEE international conference on computational electromagnetics (ICCEM) (Vol. 26, pp. 1–3). IEEE. https://doi.org/10.1109/COMPEM.2019.8779099.

  37. Ozpinar, H., Aksimsek, S., & Turker Tokan, N. (2020). A novel compact, broadband, high gain millimeter-wave antenna for 5G beam steering applications. IEEE Transactions on Vehicular Technology, p. 1. https://doi.org/10.1109/tvt.2020.2966009.

  38. Faisal, F., Amin, Y., Cho, Y., & Yoo, H. (2019). Compact and flexible novel wideband flower-shaped CPW-fed antennas for high data wireless applications. IEEE Transactions on Antennas and Propagation, 67(6), 4184–4188. https://doi.org/10.1109/TAP.2019.2911195.

    Article  Google Scholar 

  39. Yang, Y., Zhao, Z., Ding, X., Nie, Z., & Liu, Q. H. (2019). Compact UWB slot antenna utilizing traveling-wave mode based on slotline transitions. IEEE Transactions on Antennas and Propagation, 67(1), 140–150. https://doi.org/10.1109/TAP.2018.2878080.

    Article  Google Scholar 

  40. Dayo, Z. A., Cao, Q., Wang, Y., Ur Rahman, S., & Soothar, P. (2019). A compact broadband antenna for civil and military wireless communication applications. International Journal of Advanced Computer Science and Applications, 10(9), 39–44. https://doi.org/10.14569/ijacsa.2019.0100906.

    Article  Google Scholar 

  41. Guo, L., Min, M., Che, W., & Yang, W. (2019). A novel miniaturized planar ultra-wideband antenna. IEEE Access, 7, 2769–2773. https://doi.org/10.1109/ACCESS.2018.2886799.

    Article  Google Scholar 

  42. Fang, X., Wen, G., Inserra, D., Huang, Y., & Li, J. (2018). Compact wideband CPW-fed meandered-slot antenna with slotted Y-shaped central element for Wi-Fi, WiMAX, and 5G applications. IEEE Transactions on Antennas and Propagation, 66(12), 7395–7399. https://doi.org/10.1109/TAP.2018.2869254.

    Article  Google Scholar 

  43. Sun, W., Li, Y., Zhang, Z., & Chen, P. Y. (2019). Low-profile and wideband microstrip antenna using quasi-periodic aperture and slot-to-CPW transition. IEEE Transactions on Antennas and Propagation, 67(1), 632–637. https://doi.org/10.1109/TAP.2018.2874801.

    Article  Google Scholar 

Download references

Acknowledgements

Authors Zaheer Ahmed Dayo, Qunsheng Cao and Yi Wang gratefully acknowledge the support from National Natural Science Foundation of China under Grant No. 61871219.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaheer Ahmed Dayo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dayo, Z.A., Cao, Q., Wang, Y. et al. A Compact Broadband High Gain Antenna Using Slotted Inverted Omega Shape Ground Plane and Tuning Stub Loaded Radiator. Wireless Pers Commun 113, 499–518 (2020). https://doi.org/10.1007/s11277-020-07227-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07227-z

Keywords

Navigation