Multi-objective Resource Allocation for LTE/LTE-A Femtocell/HeNB Networks Using Ant Colony Optimization | Wireless Personal Communications Skip to main content
Log in

Multi-objective Resource Allocation for LTE/LTE-A Femtocell/HeNB Networks Using Ant Colony Optimization

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Existing femtocell resource allocation schemes for Long Term Evolution or LTE-Advanced femtocell networks do not jointly achieve efficient resource utilization, fairness guarantee, interference mitigation and reduced complexity in a satisfactory manner. In this paper, a multi-objective resource allocation scheme is proposed to achieve these desired features simultaneously. We first formulate three objective functions to respectively maximize resource utilization efficiency, guarantee a high degree of fairness and minimize interference. A weighted sum approach is then used to combine these objective functions to form a single multi-objective optimization problem. An ant colony optimization algorithm is employed to find the Pareto-optimal solution to this problem. Simulation results demonstrate that the proposed scheme performs jointly well in all aspects, namely resource utilization, fairness and interference mitigation. Additionally, it maintains satisfactory performance in the handover process and has a reasonably low complexity compared to the existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. It is noteworthy that path selection in ACO is determined using roulette-wheel selection, i.e., by matching the random number generated with the cumulative probability ranges associated with different paths based on the probabilities calculated using (14). As the design variables in our formulated problem are binary-valued, Step 3 only needs to compare one of the probabilities calculated with the generated random number without using roulette-wheel selection.

References

  1. Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA femtocell networks: Issues and approaches. IEEE Wireless Communications, 19(3), 86–95.

    Article  Google Scholar 

  2. Chandrasekhar, V., & Andrews, J. (2009). Spectrum allocation in tiered cellular networks. IEEE Transactions on Communications, 57(10), 3059–3068.

    Article  Google Scholar 

  3. Rahman, M., & Yanikomeroglu, H. (2010). Enhancing cell-edge performance: A downlink dynamic interference avoidance scheme with inter-cell coordination. IEEE Transactions on Wireless Communications, 9(4), 1414–1425.

    Article  Google Scholar 

  4. Sundaresan, K., & Rangarajan, S. (2009) Efficient resource management in OFDMA femtocells. In: Proceedings of the ACM international symposium on mobile ad hoc networking and computing (MobiHoc) (p. 3342). New Orleans, Louisiana.

  5. Lopez-Perez, D., Valcarce, A., de la Roche, G., & Zhang, J. (2009). OFDMA femtocells: A roadmap on interference avoidance. IEEE Communications Magazine, 47(9), 41–48.

    Article  Google Scholar 

  6. Saha, R. K. (2013). Modified proportional fair scheduling for resource reuse and interference coordination in two-tier LTE-advanced systems. International Journal of Digital Information and Wireless Communications, 3(2), 9–28.

    Google Scholar 

  7. Liang, Y.-S., Chung, W.-H., Ni, G.-K., Chen, I.-Y., Zhang, H., & Kuo, S.-Y. (2012). Resource allocation with interference avoidance in OFDMA femtocell networks. IEEE Transactions on Vehicular Technology, 61(5), 2243–2255.

    Article  Google Scholar 

  8. Lee, K., Jo, O., & Cho, D.-H. (2011). Cooperative resource allocation for guaranteeing intercell fairness in femtocell networks. IEEE Communications Letters, 15(2), 214–216.

    Article  Google Scholar 

  9. Lopez-Perez, D., Chu, X., Vasilakos, A. V., & Claussen, H. (2013). Power minimization based resource allocation for interference mitigation in OFDMA femtocell networks. IEEE Journal on Selected Areas in Communications, 32(12), 333–344.

    Google Scholar 

  10. Zheng, K., Wang, Y., Lin, C., Shen, X., & Wang, J. (2011). Graph-based interference coordination scheme in orthogonal frequency-division multiplexing access femtocell networks. IET Communications, 5(17), 2533–2541.

    Article  MathSciNet  Google Scholar 

  11. Kim, B.-G., Kwon, J.-A., & Lee, J.-W. (2013). Subchannel allocation for the OFDMA-based femtocell system. Computer Networks, 57(17), 3617–3629.

    Article  Google Scholar 

  12. Hatoum, A., Langar, R., Aitsaadi, N., Boutaba, R., & Pujolle, G. (2013). Cluster-based resource management in OFDMA femtocell networks with QoS guarantees. IEEE Transactions on Vehicular Technology, 63(5), 2378–2391.

    Article  Google Scholar 

  13. Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys and Tutorials, 16(4), 2142–2180.

    Article  Google Scholar 

  14. Jo, H.-S., Xia, P., & Andrews, J. G. (2011). Downlink femtocell networks: Open or closed?. IEEE international conference on communications (ICC) (pp. 1–5). Kyoto, Japan.

  15. Yun, S., Yi, Y., Cho, D.-H., & Mo, J. (2011). Open or close: On the sharing of femtocells. In: Proceedings of the IEEE INFOCOM (pp. 116–120). Shanghai, Japan.

  16. 3GPP. (2013). Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); overall description: Stage 2. Technical Specification 36.300. 3rd Generation Partnership Project. http://www.3gpp.org/DynaReport/36300.htm.

  17. 3GPP. (2012). Technical specification group radio access network; Evolved Universal Terrestrial Radio Access (E-UTRA); physical channels and modulation. Technical Specification 36.211. 3rd Generation Partnership Project. http://www.3gpp.org/DynaReport/36211.htm.

  18. Pedersen, K. I., Kolding, T. E., Frederiksen, F., Kovacs, I. Z., Laselva, D., & Mogensen, P. E. (2009). An overview of downlink radio resource management for UTRAN long-term evolution. ieee communications magazine, 47(7), 86–93.

    Article  Google Scholar 

  19. Capozzi, F., Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2013). Downlink packet scheduling in LTE cellular networks: Key design issues and a survey. IEEE Communications Surveys and Tutorials, 15(2), 678–700.

    Article  Google Scholar 

  20. Lopez-Perez, D., Chu, X., & Zhang, J. (2012). Dynamic downlink frequency and power allocation in OFDMA cellular networks. IEEE Transactions on Communications, 60(10), 2904–2914.

    Article  Google Scholar 

  21. Pareto, V., & Schwier, A. S. (1971). Manual of political economy. New York: A. M. Kelley.

    Google Scholar 

  22. Marler, R. T., & Arora, J. S. (2004). Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization, 26(6), 369–395.

    Article  MathSciNet  MATH  Google Scholar 

  23. Zadeh, L. A. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8(1), 59–60.

    Article  Google Scholar 

  24. Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 26(1), 29–41.

    Article  Google Scholar 

  25. Rao, S. S. (2009). Engineering Optimization: Theory and Practice. Hoboken: Wiley.

    Book  Google Scholar 

  26. Jain, R. (1991). The Art of Computer Systems Performance Analysis. Hoboken: Wiley.

    MATH  Google Scholar 

  27. Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., & Camarda, P. (2011). Simulating LTE cellular systems: An open-source framework. IEEE Transactions on Vehicular Technology, 60(2), 498–513.

    Article  Google Scholar 

  28. Capozzi, F., Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2012). On accurate simulations of LTE femtocells using an open source simulator. EURASIP Journal on Wireless Communications and Networking, 2012(328), 1–13.

    Google Scholar 

  29. 3GPP. (2009). Simulation assumptions and parameters for FDD HeNB RF requirements. Document R4-092042. 3rd Generation Partnership Project. http://www.3gpp.org/ftp/tsg_ran/wg4_radio/TSGR4_51/Documents/R4-092042.zip.

Download references

Acknowledgments

This work is supported in part by the Yayasan Universiti Multimedia (YUM) foundation and the fundamental research grant scheme (FRGS), Ministry of Higher Education, Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Loong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.L., Loo, J., Chuah, T.C. et al. Multi-objective Resource Allocation for LTE/LTE-A Femtocell/HeNB Networks Using Ant Colony Optimization. Wireless Pers Commun 92, 565–586 (2017). https://doi.org/10.1007/s11277-016-3557-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3557-5

Keywords

Navigation