Analytical Event Based Investigations Over Delphi Random Generator Distributions for Data Dissemination Routing Protocols in Highly Dense Wireless Sensor Network | Wireless Personal Communications Skip to main content
Log in

Analytical Event Based Investigations Over Delphi Random Generator Distributions for Data Dissemination Routing Protocols in Highly Dense Wireless Sensor Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper focuses on the event based investigations over different data dissemination routing protocols for highly dense wireless sensor networks. Initially for the wireless sensor network domain, we analyzed data dissemination flooding and gossiping routing protocols. We etude and exemplify our proposed model for data dissemination based evaluation with Delphi random generator distribution strategy. We calculated performance metrics as sense count, transmit count, receive count and receive redundant count. At the end, simulations analysis has been carried out to prove the validity of our designed scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Estrin, D., Govindan, R., Heidemann, J., & Kumar, S. (1999). Next century challenges: Mobile networking for smart dust. In Proceedings of ACM conference mobile computing and networking, pp. 271–278.

  2. Pottie, G. J., & Kaiser, W. (2000). Wireless sensor networks. Communications of ACM, 43, 51–58.

    Article  Google Scholar 

  3. Haas, Z. J., & Small, T. (2006). A new networking model for biological applications of ad hoc sensor networks. IEEE/ACM Transactions on Networking, 14(1), 27–40.

    Article  Google Scholar 

  4. Brooks, R. R., Ramanathan, P., & Sayeed, A. A. (2003). Distributed target classification and tracking in sensor networks. Proceedings of the IEEE, 91, 1163–1171.

    Article  Google Scholar 

  5. Estrin, D., & Cerpa, A. (2004). ASCENT: Adaptive self-configurable sensor networks topologies. IEEE Transactions on Mobile Computing, 3(3), 272–285.

    Article  Google Scholar 

  6. Clouqueur, T., Saluja, K. K., & Ramanathan, P. (2004). Fault tolerance in collaborative sensor networks for target detection. IEEE Transactions on Computers, 53, 320–333.

    Article  Google Scholar 

  7. Phipatanasuphorn, V., & Ramanathan, P. (2004). Vulnerability of sensor networks to unauthorized traversal and monitoring. IEEE Transactions on Computers, 53(3), 364–369.

    Article  Google Scholar 

  8. Krishnamachari, B., & Iyengar, S. S. (2004). Distributed bayesian algorithms for fault-tolerant event region detection in wireless sensor networks. IEEE Transactions on Computers, 53, 241–250.

    Article  Google Scholar 

  9. Ni, S. Y., et al. (1999). The broadcast storm problem in a mobile ad hoc network. In Proceedings of ACM MOBICOM, pp. 151–162.

  10. Alon, N., Bar-Noy, A., Linial, N., & Peleg, D. (1991). A lower bound for radio broadcast. Journal of Computing Systems Science, 43, 290–298.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaber, I., & Mansour, Y. (1995). Broadcast in radio networks. In Proceedings of sixth annual ACM-SIAM symposium on discrete algorithms, pp. 577–585.

  12. Guha, S., & Khuller, S. (1996). Approximation algorithms for connected dominating sets. In Proceedings of fourth annual European symposium on algorithms (ESA), pp. 179–193.

  13. Lim, H., & Kim, C. (2000). Multicast tree construction and flooding in wireless ad hoc networks. In Proceedings of ACM international workshop on modeling, analysis and simulation of wireless and mobile systems (MSWIM), pp. 61–68.

  14. Wu, J., & Dai, F. (2003). Broadcasting in ad hoc networks based on self-pruning. In Proceeding of IEEE INFOCOM.

  15. Peng, W., & Lu, X. (2000) On the reduction of broadcast redundancy in mobile ad hoc networks. In Proceeding of MOBIHOC.

  16. Peng, W., & Lu, X. (2002). AHBP: An efficient broadcast protocol for mobile ad hoc networks. Journal of Science and Technology-Beijing, China.

  17. Qayyum, A., Viennot, L., & Laouiti, A. (2000). Multipoint relaying: An efficient technique for flooding in mobile wireless networks. Technical Report 3898, INRIA-Rapport de Recherche, 2000.

  18. Sucec, J., & Marsic, I. (2000). An efficient distributed network-wide broadcast algorithm for mobile ad hoc networks. Rutgers: CAIP Technical Report 248, Rutgers Univ.

    Google Scholar 

  19. Rabiner Heinzelman, W., Kulik, J., & Balakrishnan, H. (1999). Adaptive protocols for information dissemination in wireless sensor networks. In Proceedings of the fifth annual ACM/IEEE international conference on mobile computing and networking (MobiCom ‘99), Seattle, Washington, August 15–20, pp. 174–185.

  20. Ni, S.-Y., Tseng, Y.-C., Chen, Y.-S., & Sheu, J.-P. (1999). The broadcast storm problem in a mobile ad hoc network. In Proceedings of the 5th annual ACM/IEEE international conference on mobile computing and networking, ser. MobiCom’99, 1999, pp. 151–162.

  21. Levis, P., Patel, N., Culler, D., & Shenker, S. (2004). Trickle: A selfregulating algorithm for code propagation and maintenance in wireless sensor networks. In Proceedings of the first USENIX/ACM symposium on networked systems design and implementation (NSDI), pp. 15–28.

  22. Kulkarni, S. S., & Arumugam, M. (2006). Infuse: A TDMA based data dissemination protocol for sensor networks. IJDSN, pp. 55–78.

  23. Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. In OSDI’02: Proceedings of the 5th symposium on operating systems design and implementation, pp. 147–163.

  24. Ganeriwal, S., Kumar, R., & Srivastava, M. B. (2003). Timing-sync protocol for sensor networks. In SenSys’03: Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 138–149.

  25. Maŕoti, M., Kusy, B., Simon, G., & Léedeczi, A. (2004). The flooding time synchronization protocol. In SenSys’04: Proceedings of the 2nd international conference on embedded networked sensor systems, pp. 39–49.

  26. Zeng, Y., Hu, B., & Feng, H. (2007). Time division flooding synchronization protocol for sensor networks. In MOBIQUITOUS’07: Proceedings of the 2007 fourth annual international conference on mobile and ubiquitous systems: Networking & services, pp. 1–8.

  27. Chilukuri Shanti & Anirudha Sahoo (2011). TREEFP: A TDMA-based reliable and energy efficient flooding protocol for WSNS. IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM), pp. 1–7.

  28. Birman, K. (2007). The promise, and limitations, of gossip protocols. SIGOPS Operations System Review, 41(5), 8–13.

    Article  Google Scholar 

  29. Wuhib, Fetahi, Dam, Mads, & Stadler, Rolf. (2010). A gossiping protocol for detecting global threshold crossings. IEEE Transactions on Network and Service Management, 7(1), 42–56.

    Article  Google Scholar 

  30. Wuhib, F., Dam, M., Stadler, R., & Clemm, A. (2009). Robust monitoring of network-wide aggregates through gossiping. IEEE Transactions on Network Service Management, 6, June 2009.

  31. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., et al. (1987). Epidemic algorithms for replicated database maintenance. In Proceedings of PODC’87: Sixth annual ACM symposium on principles distributed computer, New York, NY, USA, pp. 1–12.

  32. Kempe, D., Dobra, A., & Gehrke, J. (2003). Gossip-based computation of aggregate information. In Proceedings of FOCS’03: 44th annual IEEE symposium on foundations computer science, p. 482.

  33. Tang, C., & Ward, C. (2005). Gocast: Gossip-enhanced overlay multicast for fast and dependable group communication. In Proceedings of DSN’05: 2005 International conference on dependable systems Network, Washington, DC, USA, pp. 140–149.

  34. Fernandez, A., Gramoli, V., Jimenez, E., Kermarrec, A.-M., & Raynal, M. (2007). Distributed slicing in dynamic systems. In Proceedings of ICDCS’07: 27th International Conf. Distributed Comput. Syst., Los Alamitos, CA, USA,p. 66, 2007.

  35. Kostoulas, D., Psaltoulis, D., Gupta, I., Birman, K., & Demers, A. (2005). Decentralized schemes for size estimation in large and dynamic groups. In Proceedings of NCA’05: Fourth IEEE international symposium on networks computing applications, pp. 41–48.

  36. Haas, Z., Halpern, J. Y., & Li, L. (2002). Gossip-based ad hoc routing. In Proceedings of INFOCOM 2002.

  37. Christopher L. Barrett, Stephan J. Eidenbenz, Lukas Kroc, Madhav Marathe, James P. Smith. Parametric Probabilistic Sensor Network Routing. WSNA’03, San Diego, California, USA, September 19, 2003.

  38. Eugster, P. Th., Guerraoui, R., Handurukande, S. B., Kermarrec, A. M., & Kouznetsov, P. (2001). Lightweight probabilistic broadcast. In Proceedings of the 2001 international conference on dependable systems and networks (DSN’01), pp. 443–452, IEEE Computer Society, Washington, DC, USA.

  39. Rodrigues, L., Handurukande, S., Pereira, J., Guerraoui, R., & Kermarrec, A.-M. (2003). Adaptive gossip-based broadcast. DSN’03, 2003.

  40. Werner Vogels, Robbert van Renesse, & Ken Birman. (2003). The power of epidemics: Robust communication for large-scale distributed systems. ACN SIGCOMM, 33(1).

  41. Boyd, S., Ghosh, A., Prabhakar, B., & Shah, D. (2006). Randomized gossip algorithms. IEEE Transaction on Information Theory, 52(6), 2508–2530.

    Article  MathSciNet  MATH  Google Scholar 

  42. Denantes, P, Bénézit, F., Thiran, P., & Vetterli, M. (2008) Which distributed averaging algorithm should I choose for my sensor network? In Proceedings of 27th conference on computer and communications, pp. 986–994.

  43. Sarwate, A. D., & Dimakis, Ag. (2012). Impact of mobility on gossip algorithms. IEEE Transactions on Information Theory, 58(3), 1731–1742.

    Article  MathSciNet  Google Scholar 

  44. http://www.dho.edu.tr/erasmus/index.htm

  45. http://www.naval-academy.ab-archive.net/software/snetsim.html

  46. Durresi, A., Paruchuri, V. K., Iyengar, S. S., & Kannan, R. (2005). Optimized broadcast protocol for sensor networks. IEEE Transaction on Computers, 54, 1013–1024.

    Article  Google Scholar 

  47. Sabbineni, H., & Chakrabarty, K. (2005). Location-aided flooding: an energy-efficient data dissemination protocol for wireless-sensor networks. IEEE Transactions on Computers, 54(1), 36–46.

    Article  Google Scholar 

  48. Verma, V. K., Singh, S., & Pathak, N. P. (2014). Analysis of scalability for AODV routing protocol in wireless sensor networks. Optik-International Journal for Light and Electron Optics, 125(2), 748–750.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Naval Science and Engineering Institute, Istanbul, Turkey [44] for SNetSim simulator for wireless sensor network which greatly supports us for our research work. Additionally, we would like to thank Department of Electronics and Communication Engineering, SLIET, Longowal, India for providing us Wireless SignalPro software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surinder Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, V.K., Singh, S. & Pathak, N.P. Analytical Event Based Investigations Over Delphi Random Generator Distributions for Data Dissemination Routing Protocols in Highly Dense Wireless Sensor Network. Wireless Pers Commun 87, 1209–1222 (2016). https://doi.org/10.1007/s11277-015-3049-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-3049-z

Keywords

Navigation