Equivalent Circuit with Frequency-Independent Lumped Elements for Plasmonic Graphene Patch Antenna Using Particle Swarm Optimization Technique | Wireless Personal Communications Skip to main content
Log in

Equivalent Circuit with Frequency-Independent Lumped Elements for Plasmonic Graphene Patch Antenna Using Particle Swarm Optimization Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The graphene patch microstrip antenna has been investigated for 600 GHz applications. The graphene material introduces a reconfigurable surface conductivity in a terahertz frequency band. The input impedance is calculated using the finite integral technique. A five-lumped element equivalent circuit for graphene patch microstrip antenna has been investigated. The values of the lumped element equivalent circuit are optimized using the particle swarm optimization techniques. The optimization is performed to minimize the mean square error between the input impedance of the finite integral and that calculated by the equivalent circuit model. The effect of varying the grapheme material, chemical potential and relaxation time on the radiation characteristics of the graphene patch microstrip antenna has been investigated. An improved new equivalent circuit model has been introduced to best fit the input impedance using a rational function and PSO. The Cauer’s realization method is used to synthesize a new lumped-element equivalent circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Galoda, S., & Singh, G. (2007). Terahertz technology an emerging electromagnetic spectrum. In Proceedings of the international conference on information and communication technology (IICT-2007), pp. 482–486, Dehradoon, India.

  2. Jha, K. R., & Singh, G. (2014). Terahertz planar antennas for next generation communication. Dordrecht: Springer.

    Book  Google Scholar 

  3. El-Nawawy, M., Allam, A. M., & Korzec, D. (2011). The design of a 0.35 THz microstrip patch antenna on LTCC substrate. Electrical and Electronic Engineering, 1(1), 1–4.

    Article  Google Scholar 

  4. Sharma, A., & Singh, G. (2009). Rectangular microstirp patch antenna design at THz frequency for short distance wireless communication systems. Journal Infrared Millimeter Terahertz Waves, 1(30), 1–7.

    Article  MATH  Google Scholar 

  5. Bao, W. (2012). Electrical and mechanical properties of graphene. Ph.D. thesis, University of California, Riverside, USA.

  6. Choi, W., & Lee, J. (2012). Graphene: Synthesis and applications. New York, USA: CRC Press, Taylor and Francis Group.

    Google Scholar 

  7. Malhat, H. A., Zainud-Deen, S. H., & Gaber, S. M. (2014). Circularly polarized graphene based transmitarray for terahertz applications. Progress in Electromagnetics Research M (PIER M), 36, 185–191.

    Article  Google Scholar 

  8. Rouhi, N., Capdevila, S., Jain, D., Zand, K., Wang, Y., Brown, E., et al. (2012). Terahertz graphene optics. Nano Research journal, 5(10), 667–678.

    Article  Google Scholar 

  9. Tamagnone, M., Gómez-Díaz, J. S., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Analysis and design of terahertz antennas based on plasmonic resonant graphene sheets. Journal of Applied Physics, 112(11), 114915.

    Article  Google Scholar 

  10. Tamagnone, M., Gómez-Díaz, J. S., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Reconfigurable terahertz THz plasmonic antenna concept using a graphene stack. Applied Physics Letters, 101(21), 214102.

    Google Scholar 

  11. Bahl, I. (2013). Lumped elements for RF and microwave circuits. Norwood, MA: Artech House.

    Google Scholar 

  12. El-Doda, S. I. (2007). Equivalent, circuits model for antennas. M.Sc. thesis, Faculty of Electronic Engineering, Menoufia University, Egypt.

  13. Zainud-Deen, S. H., El-Doda, S. I., Awadalla, K. H., & Sharshar, H. A. (2008). The relation between lumped-element circuit models for cylindrical dielectric resonator and antenna parameters using MBPE. Progress in Electromagnetics Research M (PIER M), 1, 79–93.

    Article  Google Scholar 

  14. Mahmoud, K. R. (2008). Analysis of smart antenna arrays using optimization techniques. Ph.D. thesis, Faculty of Engineering, Helwan University, Egypt.

  15. Zhou, X., & Pan, G. W. (2006). Application of physical spline finite element method (PSFEM) to full wave analysis of waveguide. Progress in Electromagnetics Research, 60, 19–41.

    Article  Google Scholar 

  16. Clemens, M., & Weiland, T. (2001). Discrete electromagnetism with the finite integration technique. Progress in Electromagnetics Research, PIER, 32, 65–87.

    Article  Google Scholar 

  17. Hassan, W. M. (2009). Scattering from different objects using finite difference frequency domain and applications. M.Sc. thesis, Faculty of Electronic Engineering, Menoufia University, Egypt.

  18. Liao, Y., Hubing, T. H., & Su, D. (2012). Equivalent circuit for dipole antennas in a lossy medium. IEEE Transactions on Antennas and Propagation, 60(8), 3950–3953.

    Article  MathSciNet  Google Scholar 

  19. Tuovinen, T., & Berg, M. (2014). Impedance dependency on planar broadband dipole dimensions: An examination with antenna equivalent circuits. Progress in Electromagnetics Research (PIER), 144, 249–260.

    Article  Google Scholar 

  20. Kim, Y., & Ling, H. (2006). Equivalent circuit modelling of broadband antennas using a rational function approximation. Microwave and Optical Technology Letters, 48(5), 950–953.

    Article  Google Scholar 

  21. Zainud-Deen, S. H., El-Doda, S. I., Awadalla, K. H., & Sharshar, H. A. (2006). Model-based parameter estimation of antenna input impedance and radiation pattern. In Proceedings of the IEEE APS/URSI/AMEREM symposium, pp. 815–818, Albuquerque, NM, USA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hend Abd El-Azem Malhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malhat, H.A.EA., Zainud-Deen, S.H. Equivalent Circuit with Frequency-Independent Lumped Elements for Plasmonic Graphene Patch Antenna Using Particle Swarm Optimization Technique. Wireless Pers Commun 85, 1851–1867 (2015). https://doi.org/10.1007/s11277-015-2870-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2870-8

Keywords

Navigation