An Adaptive Rate Allocation System to Mitigate Starvation Dilemma in Multi-Radio Multi-Hop Wireless Mesh Networks | Wireless Personal Communications Skip to main content
Log in

An Adaptive Rate Allocation System to Mitigate Starvation Dilemma in Multi-Radio Multi-Hop Wireless Mesh Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

To this date, although a rich surge of research studies have been conducted on Wireless Mesh Networks (WMNs), still impartial distribution of network resources is one of the open issues in this area. In WMNs, stations that are more hops away from the gateway nodes generally suffer from higher throughput degradation and delay. One of the key reasons for the occurrence of such an incident is the existing limitations in MAC layers of wireless technologies. In this paper, a thorough solution based on an adaptive rate allocation mechanism is proposed to alleviate the fairness issues of WMNs. It is important to note that the presented solution is independent from MAC and underlying layers. This property differentiates it from many other related works on addressing fairness problems in WMNs. Furthermore, the ability of traffic control over UDP and TCP streams, supporting multi-radio mesh routers and restriction of internal greedy traffic within WMNs can be regarded as the main advantages of the offered solution in comparison to the earlier related works. For assessment and evaluation of the proposed scheme, several experiments have been carried out through real testbed environment. The consistency of the represented results substantiates the efficiency of the proposed mechanism in terms of addressing starvation issues and fairness provisioning for end-users of WMNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Abouaissa, A., Brahmia, M. E. A., & Lorenz, P. (2013). Increasing end-to-end fairness over IEEE 802.11e-based wireless mesh networks. International Journal of Communication Systems, 26(1), 1–12. doi:10.1002/dac.1319.

    Article  Google Scholar 

  2. Anastasi, G., Borgia, E., Conti, M., & Gregori, E. (2005). IEEE 802.11b ad hoc networks: Performance measurements. Cluster Computing, 8(2–3), 135–145. doi:10.1007/s10586-005-6179-3.

    Article  Google Scholar 

  3. Blefari-Melazzi, N., Detti, A., Habib, I., Ordine, A., & Salsano, S. (2007). TCP fairness issues in IEEE 802.11 networks: Problem analysis and solutions based on rate control. IEEE Transactions on Wireless Communications, 6(4), 1346–1355. doi:10.1109/TWC.2007.348331.

    Article  Google Scholar 

  4. Cao, Q. (2010). Providing fairness and maximizing throughput in 802.11 wireless mesh network. Master’s thesis, National University of Ireland, National University of Ireland, Maynooth, Ireland.

  5. Chilamkurti, N., & Prakasam, S. (2011). Enhanced active queue management for multi-hop networks. Mobile Networks and Applications, 16(6), 771–781. doi:10.1007/s11036-010-0266-2.

    Article  Google Scholar 

  6. Chissungo, E., Blake, E., & Le, H. (2011). Investigation into Batman-adv protocol performance in an indoor mesh potato testbed. In Intelligent Networking and Collaborative Systems (INCoS), 2011 Third International Conference on, (pp. 8–13). doi:10.1109/INCoS.2011.106.

  7. Cisco. Cisco Systems, Inc. URL http://www.cisco.com/c/en/us/td/docs/wireless/technology/mesh/7-0/design/guide/MeshAP_70.html.

  8. Compex. Compex Wireless Adapter, Model WLM200N5-23-ESD. URL http://www.compex.com.sg/productdetailinfo.asp?model=WLM200N5-23-ESD&acc1Panel=0.

  9. Dawood Sajjadi, S.D., Kwong, K.H., Chieng, D., Ng, S.C., & Hashim, F. (2013). Elastic fair rate allocation scheme for multi-radio wireless mesh networks. In Personal Indoor and Mobile Radio Communications (PIMRC), 2013 IEEE 24th International Symposium on, (pp. 2695–2700). doi:10.1109/PIMRC.2013.6666604.

  10. Firetide. Firetide - A Division of UNICOM Global. URL http://www.firetide.com/.

  11. Firetide. Firetide Delivers the Worlds Longest Wireless Infrastructure Mesh Network. URL http://www.firetide.com/121023-firetide-delivers-the-worlds-longest-mesh-network/.

  12. Gambiroza, V., Sadeghi, B., & Knightly, E.W. (2004). End-to-end performance and fairness in multihop wireless backhaul networks. In Proceedings of the 10th annual international conference on Mobile computing and networking, MobiCom ’04, (pp. 287–301). ACM, New York, NY, USA. doi:10.1145/1023720.1023749.

  13. Garetto, M., Shi, J., & Knightly, E.W. (2005). Modeling media access in embedded two-flow topologies of multi-hop wireless networks. In Proceedings of the 11th annual international conference on Mobile computing and networking, MobiCom ’05, (pp. 200–214). ACM, New York, NY, USA. doi:10.1145/1080829.1080851.

  14. GNU. GNU Operating System. URL http://www.gnu.org/software/wget/.

  15. Ho, P., Holtby, D., Kwong, K., Chieng, D., Ting, A., Chien, S., & Lim, K. (2012). End-to-end throughput and delay analysis of Wi-Fi multi-hop network with deterministic offered load. In Proceedings of International Conference on Wireless Communication and Applications. ICWCA. KL, Malaysia.

  16. Hua, C., & Zheng, R. (2008) Starvation modeling and identification in dense 802.11 wireless community networks. In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE, (pp. 1022–1030). doi:10.1109/INFOCOM.2008.156.

  17. Iperf. Iperf. URL http://sourceforge.net/projects/iperf/.

  18. Jain, R.K., Chiu, D.M.W., & Hawe, W.R. (1984). A quantitative measure of fairness and discrimination for resource allocation. In Shared Computer Systems. Tech. rep., Digital Equipment Corporation.

  19. Jamshaid, K., & Ward, P.A.S. (2007). Experiences using gateway-enforced rate-limiting techniques in wireless mesh networks. In Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE, (pp. 3725–3730). doi:10.1109/WCNC.2007.682.

  20. Jamshaid, K., Ward, P. A. S., & Karsten, M. (2012). Mechanisms for centralized flow rate control in 802.11-based wireless mesh networks. Computer Networks, 56(2), 884–901. doi:10.1016/j.comnet.2011.11.009.

    Article  Google Scholar 

  21. Jun, J., & Sichitiu, M. L. (2003). The nominal capacity of wireless mesh networks. IEEE Wireless Communications, 10(5), 8–14. doi:10.1109/MWC.2003.1241089.

    Article  Google Scholar 

  22. Leith, D. J., Cao, Q., & Subramanian, V. G. (2012). Max–min fairness in 802.11 mesh networks. IEEE/ACM Transactions on Networking, 20(3), 756–769. doi:10.1109/TNET.2011.2165850.

    Article  Google Scholar 

  23. Li, M., Claypool, M., & Kinicki, R. (2008). WBest: A bandwidth estimation tool for IEEE 802.11 wireless networks. In In Proceedings of 33rd IEEE Conference on Local Computer Networks (LCN). IEEE, Montreal, Quebec, Canada.

  24. Li, T., Leith, D. J., Badarla, V., Malone, D., & Cao, Q. (2011). Achieving end-to-end fairness in 802.11e based wireless multi-hop mesh networks without coordination. Mobile Networks and Applications, 16(1), 17–34. doi:10.1007/s11036-009-0212-3.

    Article  Google Scholar 

  25. MA Brown. (2006). Traffic control using tcng and HTB HOWTO. URL http://tldp.org/HOWTO/Traffic-Control-tcng-HTB-HOWTO.

  26. Morais, A., & Cavalli, A. (2011). A quality of experience based approach for wireless mesh networks. In Proceedings of the 9th IFIP TC 6 international conference on Wired/wireless internet communications, WWIC’11, (pp. 162–173). Berlin, Heidelberg: Springer.

  27. Murray, D., Dixon, M., & Koziniec, T. (2010). An experimental comparison of routing protocols in multi hop ad hoc networks. In Telecommunication Networks and Applications Conference (ATNAC), 2010 Australasian, (pp. 159–164). doi:10.1109/ATNAC.2010.5680190.

  28. Open-mesh. B.A.T.M.A.N. Advanced Documentation Overview. URL http://www.open-mesh.org/projects/batman-adv/wiki.

  29. Open-Mesh. Open-Mesh, Cloud Managed Wireless Networks. URL http://www.open-mesh.com/.

  30. PCEngines. Alix System Boards. URL http://pcengines.ch/alix.htm.

  31. Pióro, M., otkiewicz, M., Staehle, B., Staehle, D., & Yuan, D. (2014). On maxmin fair flow optimization in wireless mesh networks. Ad Hoc Networks 13, 134–152. doi:10.1016/j.adhoc.2011.05.003. URL http://linkinghub.elsevier.com/retrieve/pii/S1570870511000989.

  32. Quan, Z., Xinhua, J., & Fumin, Z. (2012). Research on the trunk lines transmission performance of multi-hop WMN based on 802.11n. In M. Zhu (Ed.), Business, economics, financial sciences, and management, advances in intelligent and soft computing (pp. 631–636). Berlin: Springer. doi:10.1007/978-3-642-27966-9_85.

    Google Scholar 

  33. Ronasi, K., Gopalakrishnan, S., & Wong, V.W.S. (2009), Flow starvation mitigation for wireless mesh networks. In Wireless Communications and Networking Conference, 2009. WCNC 2009. IEEE, (pp. 1–6). doi:10.1109/WCNC.2009.4917728.

  34. Ruckus. SmartMesh Networking, Ruckus Wireless, Inc. URL http://www.ruckuswireless.com/technology/smartmesh.

  35. Seither, D., Konig, A., & Hollick, M. (2011). Routing performance of wireless mesh networks: A practical evaluation of BATMAN advanced. In Local Computer Networks (LCN), 2011 IEEE 36th Conference on, (pp. 897–904). doi:10.1109/LCN.2011.6115569.

  36. Seyedzadegan, M., & Othman, M. (2010). Weighted window and class-based weighted window methods for per-station TCP fairness in IEEE 802.11 WLANs. EURASIP Journal on Wireless Communications and Networking, 2010, 84:1–84:10. doi:10.1155/2010/593497.

    Article  Google Scholar 

  37. Systems, S. (2005). Solving the wireless mesh multi-hop dilemma. URL http://www.strixsystems.com/products/datasheets/StrixWhitepaper_Multihop.pdf.

  38. Tang, J., Hincapié, R., & Xue, G. (2010). Fair bandwidth allocation in wireless mesh networks with cognitive radios. IEEE Transactions on Vehicular Technology, 59(3), 1487–1496.

    Article  Google Scholar 

  39. Tassiulas, L., & Sarkar, S. (2002). Maxmin fair scheduling in wireless networks. In INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings, (vol. 2, pp. 763–772). doi:10.1109/INFCOM.2002.1019322.

  40. Visoottiviseth, V., Trunganont, A., & Siwamogsatham, S. (2011). Cross-layer based adaptive wireless traffic control for per-flow and per-station fairness. EURASIP Journal on Wireless Communications and Networking, 2011(1), 1–26. doi:10.1186/1687-1499-2011-97.

    Article  Google Scholar 

  41. Wang, J.C.p., Hagelstein, B., & Abolhasan, M. (2010). Experimental evaluation of IEEE 802.11s path selection protocols in a mesh testbed. IEEE, (pp. 1–3).

  42. Zhang, L., Chen, S., Jian, Y., & Zhang, M. (2008). A novel solution for end-to-end fairness problem in wireless mesh networks. IEEE GLOBECOM 2008–2008 IEEE Global Telecommunications Conference (pp. 1–5). doi:10.1109/GLOCOM.2008.ECP.113.

Download references

Acknowledgments

This work is supported by the Ministry of Science, Technology and Innovation, Malaysia under Science Fund Scheme. Project Code: 01-03-04-SF0010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Dawood Sajjadi Torshizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajjadi Torshizi, S.D., Hashim, F., Kwong, K.H. et al. An Adaptive Rate Allocation System to Mitigate Starvation Dilemma in Multi-Radio Multi-Hop Wireless Mesh Networks. Wireless Pers Commun 84, 2881–2912 (2015). https://doi.org/10.1007/s11277-015-2771-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2771-x

Keywords

Navigation