A Simple Survey of Incentive Mechanisms for User-Provided Networks | Wireless Personal Communications Skip to main content
Log in

A Simple Survey of Incentive Mechanisms for User-Provided Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The high concentration of wireless devices in densely populated areas creates an alternative radio communication channel that enables users to exchange data without the use of their Internet service provider. The magnitude of user-provided networks depends entirely on user cooperation. Various incentive mechanisms are available to promote sharing. Incentive mechanisms for user-provided networks have the following classification: vehicular, social, and 3G/4G offloading. Applications, end-to-end delays and security issues are topics of analysis. Implementation of incentive mechanisms, which compensate users for their shared resources, may lead to future 3G/4G network offload and lower Internet costs for cooperative users. Challenges and open issues are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vassis, D., Kormentzas, G., Rouskas, A., & Maglogiannis, I. (2005). The IEEE 802.11g standard for high data rate wlans. Network Magazine of Global Internetworking, 19(3), 21–26.

    Article  Google Scholar 

  2. Sweeney, D. (2002). An introduction to bluetooth a standard for short range wireless networking. In: ASIC/SOC Conference, 2002. 15th Annual IEEE International. (pp. 474–475).

  3. Sofia, R., & Mendes, P. (2008). User-provided networks: Consumer as provider. IEEE Communications Magazine, 46(12), 86–91.

    Article  Google Scholar 

  4. Mota, V. F., Cunha, F. D., Macedo, D. F., Nogueira, J. M., & Loureiro, A. A. (2014). Protocols, mobility models and tools in opportunistic networks: A survey. Computer Communications, 48, 5–19. Opportunistic networks.

    Article  Google Scholar 

  5. Fonera: http://www.fon.com (2014).

  6. Openspark: https://open.sparknet.fi (2014).

  7. Google: www.android.com (2014).

  8. Apple: www.apple.com/iphone/ (2014).

  9. Freifunk: http://start.freifunk.net/ (2014).

  10. OpenWrt: https://openwrt.org (2014).

  11. Clausen, T., Jacquet, P., Adjih, C., Laouiti, A., Minet, P., Muhlethaler, P., et al. (2003). Optimized link state routing protocol (OLSR). RFC, 54(2), 1–76.

    Google Scholar 

  12. AWMN: http://www.awmn.net/ (2014).

  13. Claffy, K. (2012). Border gateway protocol (BGP) and traceroute data workshop report. ACM SIGCOMM Computer Communication Review (CCR), 42(3), 28–31.

    Article  Google Scholar 

  14. Ishmael, J., Bury, S., Pezaros, D., & Race, N. (2008). Deploying rural community wireless mesh networks. IEEE Internet Computing, 12(4), 22–29.

    Article  Google Scholar 

  15. Perkins, C., Belding-Royer, E., & Das, S. (2003). Others: Ad hoc on-demand distance vector (AODV) routing. RFC pp. 1–38.

  16. Ntareme, H., & Domancich, S. (2011). Security and performance aspects of bytewalla: A delay tolerant network on smartphones. In: Proceedings of the 2011 IEEE 7th international conference on wireless and mobile computing, networking and communications. WIMOB ’11, Washington, DC, USA, IEEE Computer Society (pp. 449–454).

  17. Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(3), 19.

    Article  Google Scholar 

  18. Ma, X., Chen, X., & Refai, H.H. (2009). Performance and reliability of DSRC vehicular safety communication: A formal analysis. EURASIP Journal on Wireless Communications and Networking, 2009, 1–13.

  19. Ibanez, A., Flores, C., Reyes, P., Barba, A., & Reyes, A. (2011). A performance study of the 802.11p standard for vehicular applications. In: Intelligent environments (IE), 2011 7th international conference on. (pp. 165–170).

  20. Gerla, M., & Kleinrock, L. (2011). Vehicular networks and the future of the mobile internet. Computer Networks, 55(2), 457–469.

    Article  Google Scholar 

  21. Rolla, V. G., Silva, D., & Curado, M. (2013). Intelligent epidemic routing for cooperative IEEE 802.11 networks. In: Wireless and mobile networking conference (WMNC), 2013 6th Joint IFIP. (pp. 1–6).

  22. Spyropoulos, T., Psounis, K., & Raghavendra, C. (2005). Spray and wait: an efficient routing scheme for intermittently connected mobile networks. In: Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking, ACM (pp. 252–259).

  23. Rolla, V. G., & Curado, M. (2013). A reinforcement learning-based routing for delay tolerant networks. Engineering Applications of Artificial Intelligence, 26(10), 2243–2250.

    Article  Google Scholar 

  24. Spyropoulos, T., Psounis, K., & Raghavendra, C. (2008). Efficient routing in intermittently connected mobile networks: The single-copy case. IEEE/ACM Transactions on Networking, 16(1), 63–76.

    Article  Google Scholar 

  25. Doering, M., Pögel, T., & Wolf, L. (2010). DTN routing in urban public transport systems. In: Proceedings of the 5th ACM workshop on challenged networks, ACM (pp. 55–62).

  26. Chen, T., & Wu, F. (2010). Stimulating cooperation in vehicular ad hoc networks: A coalitional game theoretic approach. Vehicular Technology, IEEE, 60, 1–14.

  27. Hui, P., Crowcroft, J., & Yoneki, E. (2011). Bubble rap: Social-based forwarding in delay-tolerant networks. Mobile Computing, IEEE Transactions on, 10(11), 1576–1589.

    Article  Google Scholar 

  28. Leontiadis, I., Costa, P., & Mascolo, C. (2009). A hybrid approach for content-based publish/subscribe in vehicular networks. Pervasive and Mobile Computing, 5(6), 697–713.

    Article  Google Scholar 

  29. Wang, Y., Chuah, M. C., & Chen, Y. (2014). Incentive based data sharing in delay tolerant mobile networks. Wireless Communications, IEEE Transactions on, 13(1), 370–381.

    Article  Google Scholar 

  30. Asher, D., Zaldivar, A., Barton, B., Brewer, A., & Krichmar, J. (2012). Reciprocity and retaliation in social games with adaptive agents. Autonomous Mental Development, IEEE Transactions on, 4(3), 226–238.

    Article  Google Scholar 

  31. Zhu, H., Lin, X., Lu, R., Member, S., Fan, Y., & Shen, X. S. (2009). SMART: A secure multilayer credit-based incentive scheme for delay-tolerant networks. IEEE Transactions on Vehicular Technology, 58(8), 4628–4639.

    Article  Google Scholar 

  32. Xiao, L., Chen, Y., Lin, W., & Liu, K. (2012). Indirect reciprocity security game for large-scale wireless networks. Information Forensics and Security, IEEE Transactions on, 7(4), 1368–1380.

    Article  Google Scholar 

  33. Lu, R., Lin, X., Zhu, H., Shen, X., & Preiss, B. (2010). Pi: A practical incentive protocol for delay tolerant networks. IEEE Transactions on Wireless Communications, 9(4), 1483–1493.

    Article  Google Scholar 

  34. Xiao, L., Greenstein, L., Mandayam, N., & Trappe, W. (2009). Channel-based detection of sybil attacks in wireless networks. Information Forensics and Security, IEEE Transactions on, 4(3), 492–503.

    Article  Google Scholar 

  35. Feldman, M., Papadimitriou, C., Chuang, J., & Stoica, I. (2006). Free-riding and whitewashing in peer-to-peer systems. Selected Areas in Communications, IEEE Journal on, 24(5), 1010–1019.

    Article  Google Scholar 

  36. Wei, L., Cao, Z., & Zhu, H. (2011). Mobigame: A user-centric reputation based incentive protocol for delay/disruption tolerant networks. In: Global telecommunications conference (GLOBECOM 2011), 2011 IEEE. (dec. 2011) (pp. 1–5).

  37. Bala, A., Bansal, M., & Singh, J. (2009). Performance analysis of manet under blackhole attack. In: Networks and communications, 2009. NETCOM ’09. First international conference on. (pp. 141–145).

  38. Li, N., & Das, S.K. (2010). Radon: reputation-assisted data forwarding in opportunistic networks. In: Proceedings of the second international workshop on mobile opportunistic networking. MobiOpp ’10, New York, NY, USA, ACM (pp. 8–14).

  39. Zhuo, X., Gao, W., Cao, G., & Dai, Y. (2011). Win-Coupon: An incentive framework for 3G traffic offloading. 2011 19th IEEE international conference on network protocols (October 2011) pp. 206–215.

  40. Pal, S., Kundu, S., Chatterjee, M., & Das, S. (2007). Combinatorial reverse auction based scheduling in multi-rate wireless systems. Computers, IEEE Transactions on, 56(10), 1329–1341.

    Article  MathSciNet  Google Scholar 

  41. Sen, S., Joe-Wong, C., Ha, S., & Chiang, M. (2012). Incentivizing time-shifting of data: A survey of time-dependent pricing for internet access. Communications Magazine, IEEE, 50(11), 91–99.

    Article  Google Scholar 

  42. Efstathiou, E., Frangoudis, P., & Polyzos, G. (2006). Stimulating participation in wireless community networks. In: INFOCOM 2006. 25th IEEE international conference on computer communications. Proceedings. (pp. 1–13).

  43. Zhao, G., Chen, M., & Wei, X. (2013). Ris: A reciprocal incentive scheme in selfish opportunistic networks. Wireless Personal Communications, 70(4), 1711–1734.

    Article  Google Scholar 

  44. Rolla, V. G., & Curado, M. (2015). Enabling wireless cooperation in delay tolerant networks. Information Sciences, 290, 120–133.

    Article  Google Scholar 

  45. Guan, X., Liu, C., Chen, M., Chen, H., & Ohtsuki, T. (2011). Internal threats avoiding based forwarding protocol in social selfish delay tolerant networks. In: Communications (ICC), 2011 IEEE international conference on. (pp. 1–6).

  46. Ceriani, L., & Verme, P. (2012). The origins of the gini index: Extracts from variabilit e mutabilit (1912) by corrado gini. Journal of Economic Inequality, 10(3), 421–443.

    Article  Google Scholar 

  47. Shevade, U., & Zhang, Y. (2008). Incentive-aware routing in DTNs. IEEE international conference on network protocols (October 2008) pp. 238–247.

  48. Uddin, M., Godfrey, B., & Abdelzaher, T. (2010). Relics: In-network realization of incentives to combat selfishness in dtns. In: Network protocols (ICNP), 2010 18th IEEE international conference on. (pp. 203–212).

  49. El-Azouzi, R., Pellegrini, F. D., Sidi, H. B., & Kamble, V. (2013). Evolutionary forwarding games in delay tolerant networks: Equilibria, mechanism design and stochastic approximation. Computer Networks, 57(4), 1003–1018.

    Article  Google Scholar 

  50. Liu, J., Gao, J., Jiang, X., Nishiyama, H., & Kato, N. (2012). Capacity and delay of probing-based two-hop relay in manets. Wireless Communications, IEEE Transactions on, 11(11), 4172–4183.

    Article  Google Scholar 

  51. Altman, E., El-Azouzi, R., Hayel, Y., & Tembine, H. (2009). The evolution of transport protocols: An evolutionary game perspective. Computer Networks, 53(10), 1751–1759.

    Article  Google Scholar 

  52. Sadiq, U., Kumar, M., & Wright, M. (2012). Crisp: collusion-resistant incentive-compatible routing and forwarding in opportunistic networks. In: Proceedings of the 15th ACM international conference on modeling, analysis and simulation of wireless and mobile systems. MSWiM ’12, New York, NY, USA, ACM (pp. 69–78).

Download references

Acknowledgments

The author would acknowledged Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—(CAPES), Brazilian Government, Grant: 0837-13-0, and Project “Intelligent Computing in the Internet of Services—(iCIS)”, Department of Informatics Engineering—University of Coimbra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor G. Rolla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolla, V.G., Curado, M. A Simple Survey of Incentive Mechanisms for User-Provided Networks. Wireless Pers Commun 83, 2579–2591 (2015). https://doi.org/10.1007/s11277-015-2556-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2556-2

Keywords

Navigation