A Novel 2.5–3.1 GHz Wide-Band Low-Noise Amplifier in 0.18  $$\upmu \hbox {m}$$ CMOS | Wireless Personal Communications Skip to main content
Log in

A Novel 2.5–3.1 GHz Wide-Band Low-Noise Amplifier in 0.18 \(\upmu \hbox {m}\) CMOS

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

An Erratum to this article was published on 09 December 2014

Abstract

Aiming for the simultaneous realization of constant gain, accurate input and output impedance matching and minimum noise figure (NF) over a wide frequency range, the circuit topology and detailed design of wide broadband low noise amplifier (LNA) are presented in this paper. A novel 2.5–3.1 GHz wide-band LNA with unique characteristics has been presented. Its design and layout are done by TSMC 0.18 \(\upmu \hbox {m}\) technology. Common gate stage has been used to improve input matching. In order to enhance output matching and reduce the noise as well, a buffer stage is utilized. Mid-stages which tend to improve the gain and reverse isolation are exploited. The proposed LNA achieves a power gain of 15.9 dB, a NF of 3.5 dB with an input return loss less than \(-\)11.6, output return loss of \(-\)19.2 to \(-\)19 and reverse isolation of \(-\)38 dB. The LNA consumes 54.6 mW under a supply voltage of 2 V while having some acceptable characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, Zh., Wang, Z., Zhang, M., Chen, L., Wu, Ch., & Wang, Zh. (2014). A 2.4 GHz ultra-low-power current-reuse CG-LNA with active-boosting technique \(G_m\) boosting technique. IEEE Microwave and Wireless Components Letters, 24(5).

  2. Kao, H. L., & Chang, K. C. (2008). Very low-power CMOS LNA for UWB wireless receivers using current-reused topology, Science-direct2007 Elsevier Ltd. Solid-State Electrochemistry, 52, 8690.

  3. Karimi, Gh R, & Babaei, S. (2012). Sedaghat, ultra low voltage, ultra-low power low noise amplifier for 2 GHz applications. International Journal of Electronics and Communications, 66, 1822.

    Article  Google Scholar 

  4. Saman, A., Jamal Deen, M., & Chih-Hung, Ch. (2007). Design of the input matching network of RF CMOS LNAs for low-power operation. IEEE Transactions on Circuits Systems-I: Regular Papers, 54(3).

  5. Khurram, M., & R. Hasan, S. M. (2011) Novel analysis and optimization of gm-boosted common-gate UWBLNA. Microelectronics Journal, 42, 25364.

  6. Oh, N.-J. (2010). A low-power 3.110.6 GHz ultra-wideband CMOS low-noise amplifier with common-gate input stage. Current Applications and Physics, 11(8792).

  7. Meammar, A., Chye, B. C., Anh, D. M., & Seng, Y. K. (2009). A 3–8 GHz low-noise CMOS amplifier. IEEE Microwave and Wireless Components Letters, 19(4), 245–247.

    Article  Google Scholar 

  8. Chang, J. F., & Lin, Y. S. (2011). 0.99 mW 310 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique. Electronics Letters, 47(11), 658659.

    Article  Google Scholar 

  9. Liu, R. C., Deng, K. L., & Wang, H. (2003). A 0.622 GHz broadband CMOS distributed amplifier. In Proceedings of the IEEE radio frequency integrated circuits (RFIC) symposium (p. 103106), 810.

  10. Park, B., Choi, S., & Hong, S. (2010). A low-noise amplifier with tunable interference rejection for 3.1-to 10.6-GHz UWB systems. IEEE Microwave and Wireless Components Letters, 20(1):40-42.

  11. Jung, J. H., Yun, T. Y., & Choi, J. H. (2006). Ultra-wideband low noise amplifier using a cascode feedback topology. Microwave and Optical Technology Letters, 48(6), 1102–1104.

    Article  Google Scholar 

  12. Ziabakhsh, S., Alavi-Rad, H., & Yagoub, M. C. E. (2012). A high-gain low-power 214 GHz ultra-wide-band CMOS LNA for wireless receivers. International Journal of Electronics and Communications (AE), 727–731.

  13. Liang, C. P., Rao, P. Z., Huang, T. J., & Chung, S. J. (Feb. 2010). Analysis and design of two low-power ultra-wideband CMOS low-noise amplifiers with out-band rejection. IEEE Transactions on Microwave Theory and Techniques, 58(2), 227–286.

  14. Duan, J., & Wang, Z., Li, Z. (2008). A fully integrated LNA for 3–5 GHz UWB wireless applications in 0.18m CMOS technology. IEEE, 1274–1277.

  15. Lei, Ch., Chunqi, Sh, Runxi, Zh, Ying, R., & Zongsheng, L. (2012). An ultra-wide-band 3.110.6 GHz LNA design in 0.18 um SiGe BiCMOS. International Journal of Electronics Communications (AE), 66, 157–161.

    Article  Google Scholar 

  16. Bevilac, A., & Niknejad, A. M. (2004). An ultra-wideband CMOS LNA for 3.1 to 10.6 GHz wireless receivers. In IEEE Solid-State Circuits Conference (pp. 382–383).

  17. Razavi, B. (1998). RF microelectronics. Englewood Cliffs: Prentice-hall.

    Google Scholar 

  18. Rajashekharaiah, M. (2005). Gain control and linearity Improvement for low noise amplifier in 5GHz direct conversion receivers, Master of Science thesis.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Karimi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, M., Karimi, G. A Novel 2.5–3.1 GHz Wide-Band Low-Noise Amplifier in 0.18 \(\upmu \hbox {m}\) CMOS. Wireless Pers Commun 79, 1993–2003 (2014). https://doi.org/10.1007/s11277-014-1969-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1969-7

Keywords

Navigation