Performance of Systematic Distance-4 Binary Linear Block Codes with Continuous Phase Frequency Shift Keying over MIMO Systems | Wireless Personal Communications Skip to main content
Log in

Performance of Systematic Distance-4 Binary Linear Block Codes with Continuous Phase Frequency Shift Keying over MIMO Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Codes with full information rate (optimal), for example Hamming codes, provide the highest possible code rate R (R = k/n where k and n are the code dimension and length respectively) and it is an important property for a block code. Recently, the Systematic Distance-4 (SD-4) codes are proposed that allows generating all the optimal Hamming distance-4 binary linear block codes. Continuous Phase Frequency Shift Keying (CPFSK) provides low spectral occupancy and is suitable for power and bandwidth-limited channels such as satellite communication channels. MIMO technique is essential for modern wireless communication systems. In this article, we evaluated the error performances of SD-4 codes utilizing CPFSK modulation over MIMO Rician and Rayleigh channels via computer simulations and obtained outstanding results regarding coding gain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

References

  1. Lin, S., & Costello, D. J. Jr. (2004). Error control coding. (2nd ed.). Prentice Hall.

  2. Gallager R. (1963). Low-density parity-check codes. MIT Press, Cambridge, MA

    Google Scholar 

  3. Chung S.Y., Forney G.D., Richardson T.J., Urbanke R. (2001). On the design of low-density parity-check codes within 0.0045 dB of the Shannon Limit. IEEE Communications Letter 5(2): 58–60

    Article  Google Scholar 

  4. Oenning T.R., Moon J. (2001). A low-density generator matrix interpretation of parallel concatenated single bit parity codes. IEEE Transactions on Magnetics 37(2): 737–741

    Article  Google Scholar 

  5. Frias J.G., Zhong W. (2003). Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix. IEEE Communications Letter 7(6): 266–268

    Article  Google Scholar 

  6. Pyndiah R.M. (1998). Near-optimum decoding of product codes: Block turbo codes. IEEE Transactions on Communications 46(8): 1003–1010

    Article  MATH  Google Scholar 

  7. Li J., Narayanan K.R., Georghiades C.N. (2004). Product accumulate codes: A class of codes with near-capacity performance and low decoding complexity. IEEE Transactions on Information Theory 50: 31–46

    Article  MathSciNet  Google Scholar 

  8. Isaka M., Fossorier M. (2005). High-rate serially concatenated coding with extended Hamming codes. IEEE Communications Letter 9(2): 160–162

    Article  Google Scholar 

  9. Altay G., Ucan O.N. (2006). Heuristic construction of high-rate linear block codes. International Journal of Electronics and Communications (AEUE) 60: 663–666

    Article  Google Scholar 

  10. Altay, G., Osman, O., & Ucan, O. N. (2006). Construction of systematic distance-4 binary linear block codes. European Transactions on Telecommunications (submitted).

  11. Brouwer A.E., Verhoeff T. (1993). An updated table of minimum-distance bounds for binary linear codes. IEEE Transactions on Information Theory 39(2): 664–677

    MathSciNet  Google Scholar 

  12. Rimoldi B.E. (1988). A decomposition approach to CPM. IEEE Transactions on Information Theory 34: 260–270

    Article  MathSciNet  Google Scholar 

  13. Foschini G., Gans M. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 6(3): 311–335

    Article  Google Scholar 

  14. Telatar I.E. (1999). Capacity of multi-antenna Gaussian channels. Eur Transactions on Telecommunications, (ETT) 10(6): 585–596

    Article  Google Scholar 

  15. Wittneben, A. (1991). Base station modulation diversity for digital SIMUL-CAST. In Proceedings of IEEE Vehicular Technology Conference (VTC) (pp. 505–511) May 1991.

  16. Tarokh V., Seshadri N., Calderbank A. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transaction on Information Theory 44: 744–765

    Article  MATH  MathSciNet  Google Scholar 

  17. Tarokh V., Jafarkhani H., Calderbank A. (1999). Space-time codes from orthogonal design. IEEE Transaction on Information Theory 45(5): 1456–1467

    Article  MATH  MathSciNet  Google Scholar 

  18. Alamouti S. M. (1998) A Simple transmit diversity technique for wireless communication. IEEE Journal of Selected Areas in Communication October 16(8): 1451–1458

    Article  Google Scholar 

  19. Osman O. (2007). Blind equalization of multilevel turbo coded-continuous phase frequency shift keying over MIMO channels. International Journal of Communications System 20: 103–119

    Article  Google Scholar 

  20. Rimoldi B.E. (1989). Design of coded CPFSK modulation systems for band-width and energy efficiency. IEEE Transactions on Communications 37: 897–905

    Article  Google Scholar 

  21. Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space-time wireless communications. Cambridge Univ. Press, 2003.

  22. MacKay D. (1999). Good error correcting codes based on very sparse matrices. IEEE Transactions on Information Theory 45: 399–431

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gökmen Altay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altay, G. Performance of Systematic Distance-4 Binary Linear Block Codes with Continuous Phase Frequency Shift Keying over MIMO Systems. Wireless Pers Commun 44, 403–413 (2008). https://doi.org/10.1007/s11277-007-9364-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-007-9364-2

Keywords

Navigation