Resource allocation for full-duplex MIMO relaying system with self-energy recycling | Wireless Networks Skip to main content
Log in

Resource allocation for full-duplex MIMO relaying system with self-energy recycling

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Self-energy recycling cooperative communication, in which the relay nodes simultaneously harvest energy from the source and their own transmitted signal, has been demonstrated to significantly increase the total harvested energy. In this paper, we present an optimization framework for the resource allocation and relay selection with the objective of maximizing the sum-throughput in afull-duplex multi-relay multi-user multiple-input-multiple-output network by incorporating self-energy recycling at the relays, for the first time. The formulated problem is a mixed integer non-linear programming problem, which is difficult to solve for the global optimal solution in polynomial-time. As a solution strategy, we decompose the optimization problem into two sub-problems: resource allocation problem and relay selection problem. First, we solve the resource allocation problem for a predetermined relay selection by using Taylor series approximation and convex optimization techniques. For the relay selection problem, we propose a polynomial-time sub-optimal algorithm based on the idea of iteratively selecting the relay offering the maximum throughput at each time. Through simulations, we demonstrate that the proposed dynamic time FD-MIMO system increases the throughput by 30% as compared to the conventional static time protocol system, and by a factor of 2.4 over the system without self-energy recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2015). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys Tutorials, 17(2), 757–789. https://doi.org/10.1109/COMST.2014.2368999

    Article  Google Scholar 

  2. Ku, M.-L., Li, W., Chen, Y., & Ray Liu, K. J. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys Tutorials, 18(2), 1384–1412. https://doi.org/10.1109/COMST.2015.2497324

    Article  Google Scholar 

  3. Ponnimbaduge Perera, T. D., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2018). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys Tutorials, 20(1), 264–302. https://doi.org/10.1109/COMST.2017.2783901

    Article  Google Scholar 

  4. Kang, X., Ho, C. K., & Sun, S. (2015). Full-duplex wireless-powered communication network with energy causality. IEEE Transactions on Wireless Communications, 14(10), 5539–5551. https://doi.org/10.1109/TWC.2015.2439673

    Article  Google Scholar 

  5. Hadzi-Velkov, Z., Nikoloska, I., Chingoska, H., & Zlatanov, N. (2017). Opportunistic scheduling in wireless powered communication networks. IEEE Transactions on Wireless Communications, 16(6), 4106–4119. https://doi.org/10.1109/TWC.2017.2691785

    Article  Google Scholar 

  6. Iqbal, M. S., Sadi, Y., & Coleri, S. (2020). Minimum length scheduling for full duplex time-critical wireless powered communication networks. IEEE Transactions on Wireless Communications, 19(9), 5993–6006. https://doi.org/10.1109/TWC.2020.2999130

    Article  Google Scholar 

  7. Iqbal, M. S., Sadi, Y., & Coleri, S. (2022). Minimum length scheduling for discrete-rate full-duplex wireless powered communication networks. IEEE Transactions on Wireless Communications, 21(1), 135–148. https://doi.org/10.1109/TWC.2021.3094138

    Article  Google Scholar 

  8. Iqbal, M. S., Sadi, Y., & Coleri, S. (2021). Minimum length scheduling for multi-cell full duplex wireless powered communication networks. Sensors. https://doi.org/10.3390/s21196599

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kazmi, S. A. A., Iqbal, M. S., & Coleri, S. (2021). Relay selection and throughput maximization for full duplex wireless powered cooperative communication networks. In: 2021 IEEE 32nd annual international symposium on personal, indoor and mobile radio communications (PIMRC), pp. 360–365. https://doi.org/10.1109/PIMRC50174.2021.9569288

  10. Iqbal, M. S., Sadi, Y., & Coleri, S. (2020). Throughput maximization for full duplex wireless powered communication networks. In: ICC 2020 - 2020 IEEE international conference on communications (ICC), pp. 1–6. https://doi.org/10.1109/ICC40277.2020.9148904

  11. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  12. Ibrahim, A. S., Sadek, A. K., Su, W., & Liu, K. J. R. (2008). Cooperative communications with relay-selection: When to cooperate and whom to cooperate with? IEEE Transactions on Wireless Communications, 7(7), 2814–2827.

    Article  Google Scholar 

  13. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.

    Article  Google Scholar 

  14. Pabst, R., Walke, B. H., Schultz, D. C., Herhold, P., Yanikomeroglu, H., Mukherjee, S., Viswanathan, H., Lott, M., Zirwas, W., Dohler, M., Aghvami, H., Falconer, D. D., & Fettweis, G. P. Relay-based deployment concepts for wireless and mobile broadband radio. IEEE Communications Magazine, 42(9), 80–89. https://doi.org/10.1109/MCOM.2004.1336724

    Article  Google Scholar 

  15. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part I. System description. IEEE Transactions on Communications, 51(11), 1927–1938. https://doi.org/10.1109/TCOMM.2003.818096

    Article  Google Scholar 

  16. Mishra, D., De, S., & Krishnaswamy, D. (2017). Dilemma at RF energy harvesting relay: Downlink energy relaying or uplink information transfer? IEEE Transactions on Wireless Communications, 16(8), 4939–4955. https://doi.org/10.1109/TWC.2017.2704084

    Article  Google Scholar 

  17. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636. https://doi.org/10.1109/TWC.2013.062413.122042

    Article  Google Scholar 

  18. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2014). Throughput and ergodic capacity of wireless energy harvesting based DF relaying network. In: 2014 IEEE international conference on communications (ICC), pp. 4066–4071. https://doi.org/10.1109/ICC.2014.6883957

  19. Chen, Y. (2016). Energy-harvesting AF relaying in the presence of interference and Nakagami-\(m\) fading. IEEE Transactions on Wireless Communications, 15(2), 1008–1017. https://doi.org/10.1109/TWC.2015.2481393

    Article  MathSciNet  Google Scholar 

  20. Ding, Z., Krikidis, I., Sharif, B., & Poor, H. V. (2014). Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Transactions on Wireless Communications, 13(8), 4440–4453. https://doi.org/10.1109/TWC.2014.2314114

    Article  Google Scholar 

  21. Atapattu, S., Jiang, H., Evans, J., & Tellambura, C. (2015). Time-switching energy harvesting in relay networks. In: 2015 IEEE International conference on communications (ICC), pp. 5416–5421. https://doi.org/10.1109/ICC.2015.7249185

  22. Amarasuriya, G., Larsson, E. G., & Poor, H. V. (2016). Wireless Information and power transfer in multiway massive MIMO relay networks. IEEE Transactions on Wireless Communications, 15(6), 3837–3855. https://doi.org/10.1109/TWC.2016.2530067

    Article  Google Scholar 

  23. Lee, H., Song, C., Choi, S.-H., & Lee, I. (2017). Outage probability analysis and power splitter designs for SWIPT relaying systems with direct link. IEEE Communications Letters, 21(3), 648–651. https://doi.org/10.1109/LCOMM.2016.2627055

    Article  Google Scholar 

  24. Tao, R., Salem, A., & Hamdi, K. A. (2016). Adaptive relaying protocol for wireless power transfer and information processing. IEEE Communications Letters, 20(10), 2027–2030. https://doi.org/10.1109/LCOMM.2016.2593877

    Article  Google Scholar 

  25. Gupta, A., Singh, K., & Sellathurai, M. (2019). Time-switching EH-based joint relay selection and resource allocation algorithms for multi-user multi-carrier AF relay networks. IEEE Transactions on Green Communications and Networking, 3(2), 505–522. https://doi.org/10.1109/TGCN.2019.2906616

    Article  Google Scholar 

  26. Boshkovska, E., Ng, D. W. K., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19(12), 2082–2085. https://doi.org/10.1109/LCOMM.2015.2478460

    Article  Google Scholar 

  27. Gautam, S., Lagunas, E., Chatzinotas, S., & Ottersten, B. (2019). Relay selection and resource allocation for SWIPT in multi-user OFDMA systems. IEEE Transactions on Wireless Communications, 18(5), 2493–2508. https://doi.org/10.1109/TWC.2019.2904273

    Article  Google Scholar 

  28. Dong, Y., Hossain, M. J., & Cheng, J. (2016). Performance of wireless powered amplify and forward relaying over Nakagami-\(m\) fading channels with nonlinear energy harvester. IEEE Communications Letters, 20(4), 672–675. https://doi.org/10.1109/LCOMM.2016.2528260

    Article  Google Scholar 

  29. Zhang, J., & Pan, G. (2016). Outage analysis of wireless-powered relaying MIMO systems with non-linear energy harvesters and imperfect CSI. IEEE Access, 4, 7046–7053. https://doi.org/10.1109/ACCESS.2016.2617893

    Article  Google Scholar 

  30. Wang, S., Xia, M., Huang, K., & Wu, Y.-C. (2017). Wirelessly powered two-way communication with nonlinear energy harvesting model: Rate regions under fixed and mobile relay. IEEE Transactions on Wireless Communications, 16(12), 8190–8204. https://doi.org/10.1109/TWC.2017.2758767

    Article  Google Scholar 

  31. Zhong, C., Suraweera, H. A., Zheng, G., Krikidis, I., & Zhang, Z. (2014). Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communications, 62(10), 3447–3461. https://doi.org/10.1109/TCOMM.2014.2357423

    Article  Google Scholar 

  32. Mohammadi, M., Chalise, B. K., Suraweera, H. A., Zhong, C., Zheng, G., & Krikidis, I. (2016). Throughput analysis and optimization of wireless-powered multiple antenna full-duplex relay systems. IEEE Transactions on Communications, 64(4), 1769–1785. https://doi.org/10.1109/TCOMM.2016.2527785

    Article  Google Scholar 

  33. Liu, H., Kim, K. J., Kwak, K. S., & Vincent Poor, H. (2016). Power splitting-based SWIPT with decode-and-forward full-duplex relaying. IEEE Transactions on Wireless Communications, 15(11), 7561–7577. https://doi.org/10.1109/TWC.2016.2604801

    Article  Google Scholar 

  34. Liu, H., Kim, K. J., Kwak, K. S., & Poor, H. V. (2017). QoS-constrained relay control for full-duplex relaying with SWIPT. IEEE Transactions on Wireless Communications, 16(5), 2936–2949. https://doi.org/10.1109/TWC.2017.2672551

    Article  Google Scholar 

  35. Wang, D., Zhang, R., Cheng, X., Yang, L., & Chen, C. (2017). Relay selection in full-duplex energy-harvesting two-way relay networks. IEEE Transactions on Green Communications and Networking, 1(2), 182–191. https://doi.org/10.1109/TGCN.2017.2686325

    Article  Google Scholar 

  36. Chen, G., Xiao, P., Kelly, J. R., Li, B., & Tafazolli, R. (2017). Full-duplex wireless-powered relay in two way cooperative networks. IEEE Access, 5, 1548–1558. https://doi.org/10.1109/ACCESS.2017.2661378

    Article  Google Scholar 

  37. Guo, J., Zhang, S., Zhao, N., & Wang, X. (2020). Performance of SWIPT for full-duplex relay system with co-channel interference. IEEE Transactions on Vehicular Technology, 69(2), 2311–2315. https://doi.org/10.1109/TVT.2019.2958626

    Article  Google Scholar 

  38. Nauryzbayev, G., Abdallah, M., & Rabie, K. M. (2018). Outage probability of the EH-Based Full-Duplex AF and DF Relaying Systems in \(\alpha -\mu\) Environment. In: 2018 IEEE 88th vehicular technology conference (VTC-Fall), pp. 1–6. https://doi.org/10.1109/VTCFall.2018.8690985

  39. Liu, Y., Wen, Z., Beaulieu, N. C., Liu, D., & Liu, X. (2020). Power allocation for SWIPT in Full-duplex AF relay interference channels using game theory. IEEE Communications Letters, 24(3), 608–611. https://doi.org/10.1109/LCOMM.2019.2963640

    Article  Google Scholar 

  40. Liu, K.-H., & Kung, T.-L. (2017). Performance improvement for RF energy-harvesting relays via relay selection. IEEE Transactions on Vehicular Technology, 66(9), 8482–8494. https://doi.org/10.1109/TVT.2017.2692804

    Article  Google Scholar 

  41. Xie, X., Chen, J., & Fu, Y. (2018). Outage performance and QoS optimization in full-duplex system with non-linear energy harvesting model. IEEE Access, 6, 44281–44290. https://doi.org/10.1109/ACCESS.2018.2861383

    Article  Google Scholar 

  42. Kazmi, S. A. A., & Coleri, S. (2020). Optimization of full-duplex relaying system with non-linear energy harvester. IEEE Access, 8, 201566–201576. https://doi.org/10.1109/ACCESS.2020.3035005

    Article  Google Scholar 

  43. Nguyen, B. C., Hoang, T. M., Dung, L. T., & Kim, T. (2021). Impacts of nonlinear energy harvesting and residual self-interference on the performance of full-duplex decode-and-forward relay system. IEEE Access, 9, 42333–42344. https://doi.org/10.1109/ACCESS.2021.3065500

    Article  Google Scholar 

  44. Hwang, D., Hwang, K. C., Kim, D. I., & Lee, T. (2017). Self-energy recycling for RF powered multi-antenna relay channels. IEEE Transactions on Wireless Communications, 16(2), 812–824.

    Article  Google Scholar 

  45. Zeng, Y., & Zhang, R. (2015). Full-duplex wireless-powered relay with self-energy recycling. IEEE Wireless Communications Letters, 4(2), 201–204.

    Article  Google Scholar 

  46. Nasir, A. A., Tuan, H. D., Duong, T. Q., & Poor, H. V. (2019) Full-duplex MIMO-OFDM communication with self-energy recycling. arXiv:1903.09931. [Online]. Available: arXiv:1903.09931

  47. Nasir, A. A., Tuan, H. D., Duong, T. Q., & Poor, H. V. (2020). MIMO-OFDM-based wireless-powered relaying communication with an energy recycling interface. IEEE Transactions on Communications, 68(2), 811–824.

    Article  Google Scholar 

  48. Wei, Z., Sun, S., Zhu, X., In Kim, D., & Ng, D. W. K. (2019). Resource allocation for wireless-powered full-duplex relaying systems with nonlinear energy harvesting efficiency. IEEE Transactions on Vehicular Technology, 68(12), 12079–12093.

    Article  Google Scholar 

  49. Ng, D. W. K., Lo, E. S., & Schober, R. (2012). Dynamic resource allocation in mimo-ofdma systems with full-duplex and hybrid relaying. IEEE Transactions on Communications, 60(5), 1291–1304. https://doi.org/10.1109/TCOMM.2012.031712.110233

    Article  Google Scholar 

  50. Zeng, Y., & Zhang, R. (2015). Optimized training design for wireless energy transfer. IEEE Transactions on Communications, 63(2), 536–550. https://doi.org/10.1109/TCOMM.2014.2385077

    Article  Google Scholar 

  51. Ng, D. W. K., Breiling, M., Rohde, C., Burkhardt, F., & Schober, R. (2016). Energy-efficient 5G outdoor-to-indoor communication: SUDAS over licensed and unlicensed spectrum. IEEE Transactions on Wireless Communications, 15(5), 3170–3186. https://doi.org/10.1109/TWC.2016.2517626

    Article  Google Scholar 

  52. Rong, Y., & Hua, Y. (2009). Optimality of diagonalization of multi-hop MIMO relays. IEEE Transactions on Wireless Communications, 8(12), 6068–6077. https://doi.org/10.1109/TWC.2009.12.090379

    Article  Google Scholar 

  53. Floudas, C. A. (1995). Nonlinear and mixed-integer optimization: Fundamentals and applications. London, U.K.: Oxford Univ. Press.

    Book  Google Scholar 

  54. Soysa, M., Suraweera, H. A., Tellambura, C., & Garg, H. K. (2012). Partial and opportunistic relay selection with outdated channel estimates. IEEE Transactions on Communications, 60(3), 840–850. https://doi.org/10.1109/TCOMM.2012.12.100671

    Article  Google Scholar 

  55. Chalise, B. K., Vandendorpe, L., Zhang, Y. D., & Amin, M. G. (2012). Local CSI based selection beamforming for amplify-and-forward MIMO relay networks. IEEE Transactions on Signal Processing, 60(5), 2433–2446. https://doi.org/10.1109/TSP.2012.2184535

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the Scientific and Technological Research Council of Turkey Grant \(\#\)117E241.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Adil Abbas Kazmi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof

Taking the derivative of Lagrangian function L w.r.t \(\tau _1^{m_k,k}\) and \(\tau _2^{m_k,k}\) yields

$$\begin{aligned}{} & {} \frac{\partial L}{\partial \tau _1^{m_k,k}} = \frac{1-\sigma _k}{T} \bigg ( \sum _{n=1}^{N} \mathrm{log_2}\bigg (1+{p_{s,n}^{m_k,k} \gamma _{s,n}^{m_k,k}}\bigg )\bigg ) - \nu _k = 0, \end{aligned}$$
(27)
$$\begin{aligned}{} & {} \frac{\partial L}{\partial \tau _2^{m_k,k}} = \frac{1+\sigma _k}{T} \bigg ( \sum _{n=1}^{N} \mathrm{log_2}\bigg (1+{p_{r,n}^{m_k,k} \gamma _{r,n}^{m_k,k}}\bigg ) \bigg ) - \nu _k = 0, \end{aligned}$$
(28)

We know that the optimization problem is maximized when

$$\begin{aligned} \begin{aligned}&\frac{\tau _1^{m_k,k}}{T} \sum _{n=1}^{N} \mathrm{log_2}\bigg (1+{p_{s,n}^{m_k,k} \gamma _{s,n}^{m_k,k}}\bigg ) \\&=\frac{\tau _2^{m_k,k}}{T} \sum _{n=1}^{N} \mathrm{log_2}\bigg (1+{p_{r,n}^{m_k,k} \gamma _{r,n}^{m_k,k}}\bigg ), \end{aligned} \end{aligned}$$
(29)

Therefore, the following equality holds

$$\begin{aligned} \frac{\tau _1^{m_k,k}}{1-\sigma _k} = \frac{\tau _2^{m_k,k}}{1+\sigma _k}, \end{aligned}$$
(30)

Substituting constraint (17d) into Eq. (30) gives the optimal solution of \(\tau _1^{m_k,k}\) and \(\tau _2^{m_k,k}\), as presented in Theorem 1.

Similarly, taking the derivative of L w.r.t \(p_{s,n}^{m_k,k}\) and \(p_{r,n}^{m_k,k}\) is given as

$$\begin{aligned}{} & {} \frac{\partial L}{\partial p_{s,n}^{m_k,k}} = \frac{(1-\sigma _k)\tau _1^{m_k,k}\gamma _{s,n}^{m_k,k} }{T ln(2)\bigg (\gamma _{s,n}^{m_k,k} p_{s,n}^{m_k,k}+1\bigg )} \nonumber \\{} & {} - \mu _k + \lambda _{k}\bigg (\triangledown _{p_{s,n}^{m_k,k}} P_{m_k}\bigg (\varvec{p_s^{(j)}}, \varvec{p_m^{(j)}}\bigg )\bigg ) = 0, \end{aligned}$$
(31)
$$\begin{aligned}{} & {} \frac{\partial L}{\partial p_{r,n}^{m_k,k}} = \frac{(1+\sigma _k)\tau _2^{m_k,k}\gamma _{r,n}^{m_k,k}}{T ln(2)\bigg (\gamma _{r,n}^{m_k,k} p_{r,n}^{m_k,k}+1\bigg )} \nonumber \\{} & {} - \lambda _{k} + \lambda _{k}\bigg (\triangledown _{p_{r,n}^{m_k,k}} P_{m_k}\bigg (\varvec{p_s^{(j)}}, \varvec{p_m^{(j)}}\bigg )\bigg )= 0, \end{aligned}$$
(32)

Putting the values of \(\tau _1^{m_k,k}\) and \(\tau _2^{m_k,k}\) from Eqs. (19) and (20) give

$$\begin{aligned}{} & {} \frac{\partial L}{\partial p_{s,n}^{m_k,k}} = \frac{(1-\sigma _k)(1-\sigma _k)T\gamma _{s,n}^{m_k,k} }{2 T ln(2)\bigg (\gamma _{s,n}^{m_k,k} p_{s,n}^{m_k,k}+1\bigg )} \nonumber \\{} & {} - \mu _k + \lambda _{k}\bigg (\triangledown _{p_{s,n}^{m_k,k}}P_{m_k}\bigg (\varvec{p_s^{(j)}}, \varvec{p_m^{(j)}}\bigg )\bigg )] = 0, \end{aligned}$$
(33)
$$\begin{aligned}{} & {} \frac{\partial L}{\partial p_{r,n}^{m_k,k}} = \frac{(1+\sigma _k)(1+\sigma _k)T\gamma _{r,n}^{m_k,k}}{2 T ln(2)(\gamma _{r,n}^{m_k,k} p_{r,n}^{m_k,k}+1)} \nonumber \\{} & {} - \lambda _{k} + \lambda _{k}\bigg (\triangledown _{p_{r,n}^{m_k,k}} P_{m_k}\bigg (\varvec{p_s^{(j)}}, \varvec{p_m^{(j)}}\bigg )\bigg )= 0, \end{aligned}$$
(34)

After some simple algebraic manipulations which are skipped for brevity, Eqs. (33) and (34) can be written as in Theorem 1. \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazmi, S.A.A., Iqbal, M.S. & Coleri, S. Resource allocation for full-duplex MIMO relaying system with self-energy recycling. Wireless Netw 30, 781–797 (2024). https://doi.org/10.1007/s11276-023-03527-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03527-x

Keywords

Navigation