Energy-efficient cooperative offloading for mobile edge computing | Wireless Networks Skip to main content

Advertisement

Log in

Energy-efficient cooperative offloading for mobile edge computing

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Mobile edge computing (MEC) has emerged as a promising paradigm to improve the energy efficiency for latency-constraint computation. This paper proposes a novel user cooperation approach in both computation and communication for MEC, based on the three-node cooperative offloading architecture, which consists of two mobile users and a computing access point (CAP). The mobile application tasks can be executed locally or be offloaded to either a cooperative mobile user or CAP for remote execution. The cooperative task offloading problem is investigated to minimize the energy consumption of mobile users while satisfying the execution delay. The problem is formulated as a mixed integer programming, and the NP-hardness is provided by reducing it to a 0-1 knapsack problem. This paper also provides an optimal algorithm based on dynamic programming and an efficient heuristic approach. Numerical results show that the cooperative offloading scheme outperforms the local computing method by 66.4% on the energy consumption of mobile nodes. Furthermore, the proposed heuristic algorithm can achieve near-optimal performance under different network settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The relay device may have no help.

References

  1. Mach, P., & Becvar, Z. (2017). Mobile edge computing: A survey on architecture and computation offloading. IEEE Communications Surveys & Tutorials, 19(3), 1628–1656. https://doi.org/10.1109/COMST.2017.2682318.

    Article  Google Scholar 

  2. Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2018). Mobile edge computing: A survey. IEEE Inernet of Things Journal, 5(1), 450–465. https://doi.org/10.1109/JIOT.2017.2750180.

    Article  Google Scholar 

  3. Chen, L., Wu, J., Zhang, X. X., & Zhou, G. (2017). Tarco: Two-stage auction for d2d relay aided computation resource allocation in hetnet. IEEE Transactions on Services Computing, 99, 1. https://doi.org/10.1109/TSC.2018.2792024.

    Article  Google Scholar 

  4. Barbarossa, S., Sardellitti, S., & Di Lorenzo, P. (2014). Communicating while computing: Distributed mobile cloud computing over 5g heterogeneous networks. IEEE Signal Processing Magazine, 31(6), 45–55. https://doi.org/10.1109/MSP.2014.2334709.

    Article  Google Scholar 

  5. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys & Tutorials, 19(4), 2322–2358. https://doi.org/10.1109/COMST.2017.2745201.

    Article  Google Scholar 

  6. Zhang, Y., Niyato, D., & Wang, P. (2015). Offloading in mobile cloudlet systems with intermittent connectivity. IEEE Transactions on Mobile Computing, 14(12), 2516–2529. https://doi.org/10.1109/TMC.2015.2405539.

    Article  Google Scholar 

  7. You, C., Huang, K., Chae, H., & Kim, B. H. (2017). Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 16(3), 1397–1411. https://doi.org/10.1109/TWC.2016.2633522.

    Article  Google Scholar 

  8. Chen, M. H., Dong, M., & Liang, B. (2018). Resource sharing of a computing access point for multi-user mobile cloud offloading with delay constraints. To appear in IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2018.2815533.

    Article  Google Scholar 

  9. Kamoun, M., Labidi, W., & Sarkiss, M. (2015). Joint resource allocation and offloading strategies in cloud enabled cellular networks. In in Proceeding IEEE International Conference on Communications (ICC), pages 5529 – 5534. https://doi.org/10.1109/ICC.2015.7249203.

  10. Wang, Y., Sheng, M., Wang, X., Wang, L., & Li, J. (2016). Mobile-edge computing: Partial computation offloading using dynamic voltage scaling. IEEE Transactions on Communications, 64(10), 4268–4282. https://doi.org/10.1109/TCOMM.2016.2599530.

    Article  Google Scholar 

  11. Chen, X., Jiao, L., Li, W., & Xiaoming, F. (2016). Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795–2808. https://doi.org/10.1109/TNET.2015.2487344.

    Article  Google Scholar 

  12. Mao, Y., Zhang, J., Song, S. H., & Letaief, Khaled B. (2016). Power-delay tradeoff in multi-user mobile-edge computing systems. In in Proceeding IEEE Global Communications Conference (GLOBECOM),Washington, DC, USA, pages 1–6. https://doi.org/10.1109/GLOCOM.2016.7842160.

  13. Wang, K., Yang, K., & Magurawalage, C. S. (2018). Joint energy minimization and resource allocation in c-ran with mobile cloud. IEEE Transactions on Cloud Computing, 6(3), 760–770.

    Article  Google Scholar 

  14. Cao, X., Wang, F., Jie, X., Zhang, R., & Cui, S. (2019). Joint computation and communication cooperation for energy-efficient mobile edge computing. IEEE Internet of Things Journal, 6(3), 4188–4200.

    Article  Google Scholar 

  15. Can, B., Yomo, H., & De Carvalho, E. (2006). Hybrid forwarding scheme for cooperative relaying in ofdm based networks. In in Proceeding IEEE International Conference on Communications, pages 4520–4525. https://doi.org/10.1109/ICC.2006.255351.

  16. Nicholas Laneman, J., Tse, David N. C., & Wornell, G. W. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080. https://doi.org/10.1109/TIT.2004.838089.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ju, H., & Zhang, R. (2015). User cooperation in wireless powered communication networks. In in Proceeding Global Communications Conference, pages 1430–1435. https://doi.org/10.1109/GLOCOM.2014.7037009.

  18. Shi, Y., Sharma, S., Thomas Hou, Y., & Kompella, S. (2008). Optimal relay assignment for cooperative communications. In Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing, pages 3–12. ACM. https://doi.org/10.1145/1374618.1374621.

  19. Chen, L., Wu, J., Dai, H. N., & Huang, X. (2018). Brains: Joint bandwidth-relay allocation in multi-homing cooperative d2d networks. IEEE Transactions on Vehicular Technology, 99, 99. https://doi.org/10.1109/TVT.2018.2799970.

    Article  Google Scholar 

  20. Geng, Y., & Cao, G. (2018). Peer-assisted computation offloading in wireless networks. IEEE Transactions on Wireless Communications, 17(7), 4565–4578.

    Article  Google Scholar 

  21. You, C., & Huang, K. (2018). Exploiting non-causal cpu-state information for energy-efficient mobile cooperative computing. IEEE Transactions on Wireless Communications, early accepted.https://doi.org/10.1109/TWC.2018.2820077.

    Article  Google Scholar 

  22. Lingjun, P., Chen, X., Jingdong, X., & Xiaoming, F. (2016). D2d fogging: An energy-efficient and incentive-aware task offloading framework via network-assisted d2d collaboration. IEEE Journal on Selected Areas in Communications, 34(12), 3887–3901. https://doi.org/10.1109/JSAC.2016.2624118.

    Article  Google Scholar 

  23. You, C., Huang, K., & Chae, H. (2016). Energy efficient mobile cloud computing powered by wireless energy transfer. IEEE Journal on Selected Areas in Communications, 34(5), 1757–1771. https://doi.org/10.1109/JSAC.2016.2545382.

    Article  Google Scholar 

  24. Wang, F., Jie, X., Wang, X., & Cui, S. (2017). Joint offloading and computing optimization in wireless powered mobile-edge computing systems. IEEE Transactions on Wireless Communications, 17(3), 1784–1797. https://doi.org/10.1109/TWC.2017.2785305.

    Article  Google Scholar 

  25. Hu, X., Wong, K. K., & Yang, K. (2018). Wireless powered cooperation-assisted mobile edge computing. IEEE Transactions on Wireless Communications, 17(4), 2375–2388. https://doi.org/10.1109/TWC.2018.2794345.

    Article  Google Scholar 

  26. Guo, S., Xiao, B., Yang, Y., & Yang, Y. (2016). Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. In in Proceeding IEEE International Conference on Computer Communications (INFOCOM), pages 1–9. https://doi.org/10.1109/INFOCOM.2016.7524497.

  27. Huang, D., Wang, P., & Niyato, D. (2012). A dynamic offloading algorithm for mobile computing. IEEE Transactions on Wireless Communication, 11(6), 1991–1995. https://doi.org/10.1109/TWC.2012.041912.110912

    Article  Google Scholar 

  28. Wang, Y., & Cheng, K. (2011). Energy-optimized mapping of application to smartphone platform - a case study of mobile face recognition. In Computer Vision and Pattern Recognition Workshops, pages 84–89. https://doi.org/10.1109/CVPRW.2011.5981820.

  29. Cuervo, E., Balasubramanian, A., Cho, D. K., Wolman, A., Saroiu, S., Chandra, R., & Bahl, P. (2010). Maui:making smartphones last longer with code offload. In in Proceeding International Conference on Mobile Systems, Applications, and Services, pages 49–62. https://doi.org/10.1145/1814433.1814441.

  30. Wen, Y., Zhang, W., & Luo, H. (2012). Energy-optimal mobile application execution: Taming resource-poor mobile devices with cloud clones. In in Proceeding IEEE International Conference on Computer Communications (INFOCOM), volume 131, pages 2716–2720. https://doi.org/10.1109/INFCOM.2012.6195685.

  31. Meskar, E., Todd, Terence D., Zhao, D., & Karakostas, G. (2017). Energy aware offloading for competing users on a shared communication channel. IEEE Transactions on Mobile Computing, 16(1), 87–96. https://doi.org/10.1109/TMC.2016.2538227.

    Article  Google Scholar 

  32. Barbarossa, S., Sardellitti, S., & Lorenzo, P. D. (2013). Computation offloading for mobile cloud computing based on wide cross-layer optimization. In in Proceeding Future Network and Mobile Summit (FutureNetworkSummit), pages 1–10.

  33. Sardellitti, S., Scutari, G., & Barbarossa, S. (2014). Joint optimization of radio and computational resources for multicell mobile-edge computing. IEEE Transactions on Signal and Information Processing Over Networks, 1(2), 89–103. https://doi.org/10.1109/TSIPN.2015.2448520.

    Article  MathSciNet  Google Scholar 

  34. Lyu, X., Tian, H., Sengul, C., & Zhang, P. (2017). Multiuser joint task offloading and resource optimization in proximate clouds. IEEE Transactions on Vehicular Technology, 66(4), 3435–3447. https://doi.org/10.1109/TVT.2016.2593486.

    Article  Google Scholar 

  35. Chen, X. (2014). Decentralized computation offloading game for mobile cloud computing. IEEE Transactions on Parallel and Distributed Systems, 26(4), 974–983. https://doi.org/10.1109/TPDS.2014.2316834.

    Article  Google Scholar 

  36. Chun, B. G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011). Clonecloud: elastic execution between mobile device and cloud. In in Proceeding ACM Conference on Computer Systems, pages 301–314. https://doi.org/10.1145/1966445.1966473.

  37. Kosta, S., Aucinas, A., Hui, P., Mortier, R., & Zhang, X.. (2012). Thinkair: Dynamic resource allocation and parallel execution in the cloud for mobile code offloading. in Proceeding IEEE International Conference on Computer Communications (INFOCOM), 945-953(5):945–953. https://doi.org/10.1109/INFCOM.2012.6195845.

  38. Nabar, R. U., Bölcskei, H., & Kneubühler, F. W. (2006). Fading relay channels: Performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications, 22(6), 1099–1109. https://doi.org/10.1109/JSAC.2004.830922.

    Article  Google Scholar 

  39. Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Berlin Heidelberg: Springer.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Key Technology Research and Development Program of Henan Province under Grant No. 232102210155 and Doctoral Research Fund of Zhengzhou University of Light Industry under Grant No. 2022BSJJZK14. It was also supported in part by the Huangpu International Sci &Tech Cooperation Fundation of Guangzhou, China, under Grant No. 2021GH12 and National Natural Science Foundation of China under Grant No. 62202108.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Wu, J., Chen, L. et al. Energy-efficient cooperative offloading for mobile edge computing. Wireless Netw 29, 2419–2435 (2023). https://doi.org/10.1007/s11276-023-03311-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03311-x

Keywords

Navigation