Energy harvesting cognitive radio networks: security analysis for Nakagami-m fading | Wireless Networks Skip to main content

Advertisement

Log in

Energy harvesting cognitive radio networks: security analysis for Nakagami-m fading

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Energy harvesting has lately been of particular attention to researchers. In addition, cognitive radio networks (CRNs) are recognized as an attainable measure for the problem of radio spectrum shortage in next generation radio access. A combination of these two technologies, which forms energy harvesting CRNs (EHCRNs), allows wireless communication terminals to prolong their operation time in limited spectrum scenarios. Nonetheless, that CRNs create opportunities for secondary users to access primary users’ spectrum induces vulnerability of message security. So far, security capability analysis of EHCRNs has been limited to Rayleigh fading whilst Nakagami-m fading is more common than Rayleigh fading and better reflects distinct fading severity degrees in practical scenarios. Accordingly, this paper firstly offers the precise security capability analysis of EHCRNs under interference power constraint, Nakagami-m fading, maximum transmit power constraint, and primary interference. Then, the offered analysis is ratified by computer simulations. Ultimately, multiple results reveal that the security capability is considerably improved with smaller primary interference and lower required security threshold. Moreover, the security capability is significantly impacted by channel severity and is optimized with appropriate selection of time percentage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ding, X., Zou, Y., Zhang, G., Chen, X., Wang, X., & Hanzo, L. (2019). The security–reliability tradeoff of multiuser scheduling-aided energy harvesting cognitive radio networks. IEEE Transactions on Communications, 67(6), 3890–3904. https://doi.org/10.1109/TCOMM.2019.2904258.

    Article  Google Scholar 

  2. Lopez-Yela, A., & Segovia-Vargas, D. (2017). A triple-band bow-tie rectenna for RF energy harvesting without matching network. In Paper presented at the 2017 IEEE wireless power transfer conference (WPTC).

  3. Zhao, N., Zhang, S., Yu, F. R., Chen, Y., Nallanathan, A., & Leung, V. C. M. (2017). Exploiting interference for energy harvesting: A survey, research issues, and challenges. IEEE Access, 5, 10403–10421.

    Article  Google Scholar 

  4. Huang, K., & Zhou, X. (2015). Cutting the last wires for mobile communications by microwave power transfer. IEEE Communications Magazine, 53(6), 86–93.

    Article  MathSciNet  Google Scholar 

  5. Bito, J., Palazzi, V., Hester, J., Bahr, R., Alimenti, F., Mezzanotte, P., & Tentzeris, M. M. (2017). Millimeter-wave ink-jet printed RF energy harvester for next generation flexible electronics. In Paper presented at the 2017 IEEE wireless power transfer conference (WPTC).

  6. Khattab, A., Elgaml, N., & Mourad, H. (2019). Single-channel slotted contention in cognitive radio vehicular networks. IET Communications, 13(8), 1078–1089.

    Article  Google Scholar 

  7. Liu, M., Zhang, J., Lin, Y., Wu, Z., Shang, B., & Gong, F. (2019). Carrier frequency estimation of time-frequency overlapped MASK signals for underlay cognitive radio network. IEEE Access, 7, 58277–58285.

    Article  Google Scholar 

  8. Moualeu, J. M., Sofotasios, P., Benevides, D., Muhaidat, S., Hamouda, W., & Dias, U. (2019). Physical-layer security of SIMO communication systems over multipath fading conditions. IEEE Transactions on Sustainable Computing,. https://doi.org/10.1109/TSUSC.2019.2915547.

    Article  Google Scholar 

  9. Lei, H., Yang, Z., Park, K., Ansari, I. S., Guo, Y., Pan, G., et al. (2019). Secrecy outage analysis for cooperative NOMA systems with relay selection schemes. IEEE Transactions on Communications,. https://doi.org/10.1109/TCOMM.2019.2916070.

    Article  Google Scholar 

  10. Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2016). Secrecy outage of a simultaneous wireless information and power transfer cognitive radio system. IEEE Wireless Communications Letters, 5(3), 288–291.

    Article  Google Scholar 

  11. Yan, P., Zou, Y., & Zhu, J. (2018). Energy-aware multiuser scheduling for physical-layer security in energy-harvesting underlay cognitive radio systems. IEEE Transactions on Vehicular Technology, 67(3), 2084–2096.

    Article  Google Scholar 

  12. Mobini, Z., & Mohammadi, M. (2017). Secure spectrum-sharing networks with full-duplex multiple-antenna wireless-powered secondary system. In Paper presented at the 2017 IEEE international black sea conference on communications and networking (BlackSeaCom).

  13. Lei, H., Xu, M., Ansari, I. S., Pan, G., Qaraqe, K. A., & Alouini, M. (2017). On secure underlay MIMO cognitive radio networks with energy harvesting and transmit antenna selection. IEEE Transactions on Green Communications and Networking, 1(2), 192–203.

    Article  Google Scholar 

  14. Liu, Y., Wang, L., Zaidi, S. A. R., Elkashlan, M., & Duong, T. Q. (2016). Secure D2D communication in large-scale cognitive cellular networks: A wireless power transfer model. IEEE Transactions on Communications, 64(1), 329–342.

    Article  Google Scholar 

  15. Mou, W., Yang, W., Xu, X., Li, X., & Cai, Y. (2016). Secure transmission in spectrum-sharing cognitive networks with wireless power transfer. In Paper presented at the 2016 8th international conference on wireless communications & signal processing (WCSP).

  16. Ho-Van, K., & Do-Dac, T. (2019). Performance analysis of jamming technique in energy harvesting cognitive radio networks. Telecommunication Systems, 70(3), 321–336.

    Article  Google Scholar 

  17. Hieu, T. D., Duy, T. T., & Choi, S. G. (2018). Performance enhancement for harvest-to-transmit cognitive multi-hop networks with best path selection method under presence of eavesdropper. In Paper presented at the 2018 20th international conference on advanced communication technology (ICACT).

  18. Maji, P., Prasad, B., Roy, S. D., & Kundu, S. (2018). Secrecy outage of a cognitive radio network with selection of energy harvesting relay and imperfect CSI. Wireless Personal Communications, 100(2), 571–586.

    Article  Google Scholar 

  19. Benedict, F. P., Maji, P., Roy, S. D., & Kundu, S. (2017). Secrecy analysis of a cognitive radio network with an energy harvesting AF relay. In Paper presented at the 2017 international conference on wireless communications, signal processing and networking (WiSPNET).

  20. Maji, P., Roy, S. D., & Kundu, S. (2018). Physical layer security in cognitive radio network with energy harvesting relay and jamming in the presence of direct link. IET Communications, 12(11), 1389–1395.

    Article  Google Scholar 

  21. Raghuwanshi, S., Maji, P., Roy, S. D., & Kundu, S. (2016). Secrecy performance of a dual hop cognitive relay network with an energy harvesting relay. In Paper presented at the 2016 international conference on advances in computing, communications and informatics (ICACCI).

  22. Ho-Van, K., & Do-Dac, T. (2018). Eavesdropping-decoding compromise in spectrum sharing paradigm with ES-capable AF relay. Wireless Networks,. https://doi.org/10.1007/s11276-018-1878-x.

    Article  Google Scholar 

  23. Ho-Van, K., & Do-Dac, T. (2019). Relaying communications in energy scavenging cognitive networks: Secrecy outage probability analysis. Wireless Communications and Mobile Computing,. https://doi.org/10.1155/2019/2109837.

    Article  Google Scholar 

  24. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products, edited by A. New York: Jeffrey Academic.

    MATH  Google Scholar 

  25. Ho-Van, K., & Do-Dac, T. (2018). Security performance analysis of underlay cognitive networks with helpful jammer under interference from primary transmitter. Mobile Networks and Applications,. https://doi.org/10.1007/s11036-018-1185-x.

    Article  Google Scholar 

  26. Ho-Van, K. (2017). Influence of channel information imperfection on outage probability of cooperative cognitive networks with partial relay selection. Wireless Personal Communications, 94(4), 3285–3302.

    Article  Google Scholar 

  27. Yulong, Z., Xianbin, W., & Weiming, S. (2013). Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Transactions on Communications, 61(12), 5103–5113.

    Article  Google Scholar 

  28. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes. New York: Tata McGraw-Hill Education.

    Google Scholar 

Download references

Acknowledgements

This paper was funded by the scientific research fund of Thu Dau Mot University through a scientific topic called Physical Performance Information Security Analysis in Cognitive Radio Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuong Ho-Van.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Theorem 1

Rewrite \(\varUpsilon \left( {{P_s}} \right) \) in (18) as

$$\begin{aligned} \varUpsilon \left( {{P_s}} \right) = \int \limits _0^\infty {\int \limits _0^{{2^{{C_0}}}\left( {1 + y} \right) - 1} {{f_{{\varPsi _d},{\varPsi _e}}}\left( {\left. {x,y} \right| {P_s}} \right) dxdy} }. \end{aligned}$$
(45)

Conditioned on \(P_s\), \(\varPsi _d\) and \(\varPsi _e\) are statistically independent. Accordingly, the jointly conditional PDF of \(\varPsi _d\) and \(\varPsi _e\), \({{f_{{\varPsi _d},{\varPsi _e}}}\left( {\left. {x,y} \right| {P_s}} \right) }\), can be rewritten as a product of marginal PDFs: \({f_{{\varPsi _d},{\varPsi _e}}}\left( {\left. {x,y} \right| {P_s}} \right) = {f_{{\varPsi _d}}}\left( {\left. x \right| {P_s}} \right) {f_{{\varPsi _e}}}\left( {\left. y \right| {P_s}} \right). \) Inserting this result into (45), one has

$$\begin{aligned} \begin{aligned} \varUpsilon \left( {{P_s}} \right)&= \int \limits _0^\infty {\left[ {\int \limits _0^{{2^{{C_0}}}\left( {1 + y} \right) - 1} {{f_{{\varPsi _d}}}\left( {\left. x \right| {P_s}} \right) dx} } \right] } {f_{{\varPsi _e}}}\left( {\left. y \right| {P_s}} \right) dy \\&= \int _0^\infty {{F_{{\varPsi _d}}}\left( {\left. {{2^{{C_0}}}\left[ {1 + y} \right] - 1} \right| {P_s}} \right) } {f_{{\varPsi _e}}}\left( {\left. y \right| {P_s}} \right) dy. \end{aligned} \end{aligned}$$
(46)

To numerically evaluate (46), one needs to obtain two expressions of \({F_{{\varPsi _d}}}\left( {\left. \rho \right| {P_s}} \right) \) and \({f_{{\varPsi _e}}}\left( {\left. y \right| {P_s}} \right) \). In the sequel, they are derived.

A. The expression of \({F_{{\varPsi _d}}}\left( {\left. \rho \right| {P_s}} \right) \)

Conditioned on \({P_s}\), the CDF of \(\varPsi _d\) is derived by using its explicit form in (11) as

$$\begin{aligned} \begin{aligned} {F_{{\varPsi _d}}}\left\{ {\left. \rho \right| {P_s}} \right\}&= \Pr \left\{ {\left. {{\varPsi _d}< \rho } \right| {P_s}} \right\} \\&= \Pr \left\{ {\left. {\frac{{{P_s}{g_3}}}{{{P_p}{g_6} + {N_0}}} < \rho } \right| {P_s}} \right\} \\&= \int \limits _0^\infty {{F_{{g_3}}}\left( {\frac{{\left[ {{P_p}x + {N_0}} \right] \rho }}{{{P_s}}}} \right) } {f_{{g_6}}}\left( x \right) dx. \end{aligned} \end{aligned}$$
(47)

Using (1) for \({f_{{g_6}}}\left( \cdot \right) \) and (3) for \({F_{{g_3}}}\left( \cdot \right) \), one rewrites (47) as

$$\begin{aligned} \begin{aligned}&{F_{{\varPsi _d}}}\left( {\left. \rho \right| {P_s}} \right) = \int \limits _0^\infty \left( {1 - \sum \limits _{t = 0}^{{m_3} - 1} {\frac{{{{\left[ {\left( {{P_p}x + {N_0}} \right) {\beta _3}\rho /{P_s}} \right] }^t}}}{{t!{e^{\left( {{P_p}x + {N_0}} \right) {\beta _3}\rho /{P_s}}}}}} } \right) \\&\quad \frac{{\beta _6^{{m_6}}{x^{{m_6} - 1}}}}{{{e^{{\beta _6}x}}\varGamma \left( {{m_6}} \right) }}dx \\&\qquad = 1 - \frac{{{e^{ - {N_0}{\beta _3}\rho /{P_s}}}}}{{\beta _6^{ - {m_6}}\varGamma \left( {{m_6}} \right) }}\sum \limits _{t = 0}^{{m_3} - 1} {\frac{1}{{t!}}{{\left( {\frac{{{P_p}{\beta _3}\rho }}{{{P_s}}}} \right) }^t}} \int \limits _0^\infty {{\left( {x + \frac{{{N_0}}}{{{P_p}}}} \right) }^t}\\&\quad \frac{{{x^{{m_6} - 1}}}}{{{e^{\left( {{\beta _6} + \frac{{{P_p}{\beta _3}\rho }}{{{P_s}}}} \right) x}}}} dx. \end{aligned} \end{aligned}$$
(48)

Utilizing the binomial expansion in [24, Eq. (1.111)], (48) is simplified as

$$\begin{aligned} \begin{aligned} {F_{{\varPsi _d}}}\left( {\left. \rho \right| {P_s}} \right)&= 1 - \frac{{{e^{ - {N_0}{\beta _3}\rho /{P_s}}}}}{{\beta _6^{ - {m_6}}\varGamma \left( {{m_6}} \right) }}\sum \limits _{t = 0}^{{m_3} - 1} {\frac{1}{{t!}}{{\left( {\frac{{{P_p}{\beta _3}\rho }}{{{P_s}}}} \right) }^t}} \\&\quad \times \int \limits _0^\infty {\left[ {\sum \limits _{k = 0}^t {\left( {\begin{array}{c} t \\ k \\ \end{array}} \right) {x^k}{{\left( {\frac{{{N_0}}}{{{P_p}}}} \right) }^{t - k}}} } \right] } {x^{{m_6} - 1}}{e^{ - \left( {{\beta _6} + \frac{{{P_p}{\beta _3}\rho }}{{{P_s}}}} \right) x}}dx \\&= 1 - \frac{{{e^{ - {N_0}{\beta _3}\rho /{P_s}}}}}{{\beta _6^{ - {m_6}}\varGamma \left( {{m_6}} \right) }}\sum \limits _{t = 0}^{{m_3} - 1} {\sum \limits _{k = 0}^t {\frac{1}{{t!}}{{\left( {\frac{{{P_p}{\beta _3}\rho }}{{{P_s}}}} \right) }^t}\left( {\begin{array}{c} t \\ k \\ \end{array}} \right) {{\left( {\frac{{{N_0}}}{{{P_p}}}} \right) }^{t - k}} } } \\&\quad \times \int \limits _0^\infty {{x^{k + {m_6} - 1}}{e^{ - \left( {{\beta _6} + \frac{{{P_p}{\beta _3}\rho }}{{{P_s}}}} \right) x}}} dx. \end{aligned} \end{aligned}$$
(49)

The last integral in (49) is computed with the aid of [24, Eq. (3.381.4)] as

$$\begin{aligned} \begin{aligned} {F_{{\varPsi _d}}}\left( {\left. \rho \right| {P_s}} \right)&= 1 - \frac{{\beta _6^{{m_6}}}}{{\varGamma \left( {{m_6}} \right) }}{e^{ - \frac{{{N_0}{\beta _3}\rho }}{{{P_s}}}}}\sum \limits _{t = 0}^{{m_3} - 1} {\sum \limits _{k = 0}^t {\frac{1}{{t!}}{{\left( {\frac{{{P_p}{\beta _3}\rho }}{{{P_s}}}} \right) }^t} } } \\&\quad \times \left( {\begin{array}{c} t \\ k \\ \end{array}} \right) {\left( {\frac{{{N_0}}}{{{P_p}}}} \right) ^{t - k}}\frac{{\varGamma \left( {k + {m_6}} \right) }}{{{{\left( {{\beta _6} + {P_p}{\beta _3}\rho /{P_s}} \right) }^{k + {m_6}}}}}. \end{aligned} \end{aligned}$$
(50)

B. The expression of \({f_{{\varPsi _e}}}\left( {\left. x \right| {P_s}} \right) \)

Following the derivation of (50), one can obtain the CDF of \(\varPsi _e\) as

$$\begin{aligned} \begin{aligned} {F_{{\varPsi _e}}}\left( {\left. x \right| {P_s}} \right)&= 1 - \frac{{\beta _7^{{m_7}}}}{{\varGamma \left( {{m_7}} \right) }}\sum \limits _{l = 0}^{{m_4} - 1} {\sum \limits _{n = 0}^l {\frac{{\varGamma \left( {n + {m_7}} \right) }}{{l!}}{{\left( {\frac{{{P_s}}}{{{P_p}{\beta _4}}}} \right) }^{n + {m_7} - l}} } } \\&\quad \times \left( {\begin{array}{c} l \\ n \\ \end{array}} \right) {{\left( {\frac{{{N_0}}}{{{P_p}}}} \right) }^{l - n}}\frac{{{x^l}{e^{ - {N_0}{\beta _4}x/{P_s}}}}}{{{{\left( {x + {\beta _7}{P_s}/{{P_p}{\beta _4}}} \right) }^{n + {m_7}}}}}. \end{aligned} \end{aligned}$$
(51)

By taking the derivative of \({F_{{\varPsi _e}}}\left( {\left. x \right| {P_s}} \right) \) with respect to x, one represents the conditional PDF of \(\varPsi _e\) as

$$\begin{aligned} {f_{{\varPsi _e}}}\left( {\left. x \right| {P_s}} \right)&= \sum \limits _{l = 0}^{{m_4} - 1} {\sum \limits _{n = 0}^l {{H_1}} } \left( {{{{{\bar{H}}} }_5}\frac{x}{{x + {{{{\bar{H}}} }_4}}} + {{{{\bar{H}}} }_6}x - {{{{\bar{H}}} }_2}} \right) \\&\frac{{{x^{l - 1}}{e^{ - {{{{\bar{H}}} }_3}x}}}}{{{{\left( {x + {{{{\bar{H}}} }_4}} \right) }^{n + {m_7}}}}}, \end{aligned}$$
(52)

where \(H_1\) is given by (38) and

$$\begin{aligned} {{{\bar{H}}} _2}&= P_s^{n + {m_7} - l}l, \end{aligned}$$
(53)
$$\begin{aligned} {{{\bar{H}}} _3}&= {{{N_0}{\beta _4}}}/{{{P_s}}}, \end{aligned}$$
(54)
$$\begin{aligned} {{{\bar{H}}} _4}&= {{{\beta _7}{P_s}}}/\left( {{{P_p}{\beta _4}}}\right) , \end{aligned}$$
(55)
$$\begin{aligned} {{{\bar{H}}} _5}&= P_s^{n + {m_7} - l}\left( {n + {m_7}} \right) , \end{aligned}$$
(56)
$$\begin{aligned} {{{\bar{H}}} _6} &= P_s^{n + {m_7} - l - 1}{N_0}{\beta _4}. \end{aligned}$$
(57)

C. The expression of \(\varUpsilon \left( {{P_s}} \right) \)

Substituting \(\rho ={{2^{{C_0}}}\left( {1 + x} \right) - 1}\) into (50) results in

$$\begin{aligned} \begin{aligned}&{F_{{\varPsi _d}}}\left( {\left. {{2^{{C_0}}}\left[ {1 + x} \right] - 1} \right| {P_s}} \right) = 1 - \frac{{\beta _6^{{m_6}}}}{{\varGamma \left( {{m_6}} \right) }}\sum \limits _{t = 0}^{{m_3} - 1} {\sum \limits _{k = 0}^t {\frac{{\varGamma \left( {k + {m_6}} \right) }}{{t!}} } } \\&\qquad \times \left( {\begin{array}{c} t \\ k \\ \end{array}} \right) \frac{{{e^{ - {N_0}{\beta _3}\left( {{2^{{C_0}}}\left[ {1 + x} \right] - 1} \right) /{P_s}}}{{\left( {{P_p}{\beta _3}\left\{ {{2^{{C_0}}}\left[ {1 + x} \right] - 1} \right\} /{P_s}} \right) }^t}}}{{{{\left( {{N_0}/{P_p}} \right) }^{k - t}}{{\left( {{\beta _6} + {P_p}{\beta _3}\left\{ {{2^{{C_0}}}\left[ {1 + x} \right] - 1} \right\} /{P_s}} \right) }^{k + {m_6}}}}} \\&\quad = 1 - \frac{{\beta _6^{{m_6}}}}{{\varGamma \left( {{m_6}} \right) }}\sum \limits _{t = 0}^{{m_3} - 1} {\sum \limits _{k = 0}^t {\frac{{{{\left( {x + 1 - {2^{ - {C_0}}}} \right) }^t}}}{{t!{e^{{N_0}{\beta _3}\left( {{2^{{C_0}}}\left[ {1 + x} \right] - 1} \right) /{P_s}}}}} } } \\&\qquad \times {\left( {\frac{{{P_p}{\beta _3}}}{{{P_s}{2^{ - {C_0}}}}}} \right) ^t}\left( {\begin{array}{c} t \\ k \\ \end{array}} \right) \frac{{{{\left( {{N_0}/{P_p}} \right) }^{t - k}}\varGamma \left( {k + {m_6}} \right) }}{{{{\left( {{\beta _6} + {P_p}{\beta _3}\left\{ {{2^{{C_0}}}\left[ {1 + x} \right] - 1} \right\} /{P_s}} \right) }^{k + {m_6}}}}}. \end{aligned} \end{aligned}$$
(58)

Performing the binomial expansion to \({{{\left( {x + 1 - {2^{ - {C_0}}}} \right) }^t}}\) and after some simplifications, one can write (58) in a compact form as

$$\begin{aligned} \begin{aligned}&{F_{{\varPsi _d}}}\left( {\left. {{2^{{C_0}}}\left[ {1 + x} \right] - 1} \right| {P_s}} \right) \\&\quad = 1 - \sum \limits _{t = 0}^{{m_3} - 1} {\sum \limits _{k = 0}^t {\frac{{\sum \limits _{u = 0}^t {\left( {\begin{array}{c} t \\ u \\ \end{array}} \right) {x^u}{{\left( {1 - {2^{ - {C_0}}}} \right) }^{t - u}}} }}{{t!{e^{{N_0}{\beta _3}\left( {{2^{{C_0}}}\left[ {1 + x} \right] - 1} \right) /{P_s}}}}} } } \\&\qquad \times {\left( {\frac{{{P_p}{\beta _3}}}{{{P_s}{2^{ - {C_0}}}}}} \right) ^t}\left( {\begin{array}{c} t \\ k \\ \end{array}} \right) \frac{{\beta _6^{{m_6}}{{\left( {{N_0}/{P_p}} \right) }^{t - k}}\varGamma \left( {k + {m_6}} \right) }}{{{{\left( {{\beta _6} + {P_p}{\beta _3}\left\{ {{2^{{C_0}}}\left[ {1 + x} \right] - 1} \right\} /{P_s}} \right) }^{k + {m_6}}}\varGamma \left( {{m_6}} \right) }} \\&\quad = 1 - \sum \limits _{t = 0}^{{m_3} - 1} {\sum \limits _{k = 0}^t {\sum \limits _{u = 0}^t {{Q_1}{{{{\bar{Q}}}}_2}{Q_3}} \frac{{{x^u}{e^{ - {{{{\bar{Q}}}}_5}x}}}}{{{{\left( {x + {{{{\bar{Q}}}}_4}} \right) }^{k + {m_6}}}}}} }, \end{aligned} \end{aligned}$$
(59)

where \(Q_1\) and \(Q_3\) are respectively given by (33) and (35), and

$$\begin{aligned} {{{{\bar{Q}}}}_2}&= P_s^{k + {m_6} - t}{e^{ - {N_0}{\beta _3}\left( {{2^{{C_0}}} - 1} \right) /{P_s}}}, \end{aligned}$$
(60)
$$\begin{aligned} {{{{\bar{Q}}}}_4}&= 1 - {2^{ - {C_0}}} + {{{\beta _6}{P_s}}}/\left( {{{P_p}{\beta _3}{2^{{C_0}}}}}\right) , \end{aligned}$$
(61)
$$\begin{aligned} {{{{\bar{Q}}}}_5}&= {{{N_0}{\beta _3}{2^{{C_0}}}}}/{{{P_s}}}. \end{aligned}$$
(62)

Inserting (59) and (52) into (46), one obtains

$$\begin{aligned} \begin{aligned} \varUpsilon \left( {{P_s}} \right)&= \sum \limits _{l = 0}^{{m_4} - 1} {\sum \limits _{n = 0}^l {{H_1}\left( {{{\bar{H}}_5}\int \limits _0^\infty {\frac{{{x^l}{e^{ - {{\bar{H}}_3}x}}}}{{{{\left( {x + {{{{\bar{H}}}}_4}} \right) }^{n + {m_7} + 1}}}}dx} } \right. } } \\&\quad +{{{{\bar{H}}}}_6}\int \limits _0^\infty {\frac{{{x^l}{e^{ - {{\bar{H}}_3}x}}}}{{{{\left( {x + {{{{\bar{H}}}}_4}} \right) }^{n + {m_7}}}}}dx} - {{{{\bar{H}}}}_2}\int \limits _0^\infty {\frac{{{x^{l - 1}}{e^{ - {{\bar{H}}_3}x}}}}{{{{\left( {x + {{{{\bar{H}}}}_4}} \right) }^{n + {m_7}}}}}dx} \\&\quad + \sum \limits _{t = 0}^{{m_3} - 1} {\sum \limits _{k = 0}^t {\sum \limits _{u = 0}^t {{Q_1}{{{{\bar{Q}}}}_2}{Q_3}\left\{ {{{\bar{H}}_2}\int \limits _0^\infty {\frac{{{x^{u + l - 1}}{e^{ - \left( {{{{{\bar{H}}}}_3} + {{{{\bar{Q}}}}_5}} \right) x}}}}{{{{\left( {x + {{\bar{Q}}_4}} \right) }^{k + {m_6}}}{{\left( {x + {{{{\bar{H}}}}_4}} \right) }^{n + {m_7}}}}}dx} } \right. } } } \\&\quad - {{{{\bar{H}}}}_5}\int \limits _0^\infty {\frac{{{x^{u + l}}{e^{ - \left( {{{{{\bar{H}}}}_3} + {{{{\bar{Q}}}}_5}} \right) x}}}}{{{{\left( {x + {{{{\bar{Q}}}}_4}} \right) }^{k + {m_6}}}{{\left( {x + {{{{\bar{H}}}}_4}} \right) }^{n + {m_7} + 1}}}}dx}\\&\quad \left. { - \left. {{{{{\bar{H}}}}_6}\int \limits _0^\infty {\frac{{{x^{u + l}}{e^{ - \left( {{{{{\bar{H}}}}_3} + {{{{\bar{Q}}}}_5}} \right) x}}}}{{{{\left( {x + {{{{\bar{Q}}}}_4}} \right) }^{k + {m_6}}}{{\left( {x + {{{{\bar{H}}}}_4}} \right) }^{n + {m_7}}}}}dx} } \right\} } \right) . \end{aligned} \end{aligned}$$
(63)

The integrals in (63) are solved with the aid of Lemmas 2 and 3, reducing (63) to

$$\begin{aligned} \begin{aligned}&\varUpsilon \left( {{P_s}} \right) = \sum \limits _{l = 0}^{{m_4} - 1} {\sum \limits _{n = 0}^l {{H_1}\left[ {{{{{\bar{H}}}}_5}\varTheta \left( {l,{{{{\bar{H}}}}_3},{{{{\bar{H}}}}_4},n + {m_7} + 1} \right) } \right. } } \\&\quad + {{{{\bar{H}}}}_6}\varTheta \left( {l,{{{{\bar{H}}}}_3},{{{{\bar{H}}}}_4},n + {m_7}} \right) - {{{{\bar{H}}}}_2}\varTheta \left( {l - 1,{{{{\bar{H}}}}_3},{{{{\bar{H}}}}_4},n + {m_7}} \right) \\&\quad + \sum \limits _{t = 0}^{{m_3} - 1} {\sum \limits _{k = 0}^t {\sum \limits _{u = 0}^t {{Q_1}{{{{\bar{Q}}}}_2}{Q_3}\left\{ {{{{{\bar{H}}}}_2}\varOmega \left( {u + l - 1,{{{{\bar{Q}}}}_4},k + {m_6},{{{{\bar{H}}}}_4},n + {m_7},{{{{\bar{H}}}}_3} + {{{{\bar{Q}}}}_5}} \right) } \right. } } } \\&\quad - {{{{\bar{H}}}}_5}\varOmega \left( {u + l,{{{{\bar{Q}}}}_4},k + {m_6},{{{{\bar{H}}}}_4},n + {m_7} + 1,{{{{\bar{H}}}}_3} + {{{{\bar{Q}}}}_5}} \right) \\&\quad - \left. {\left. {{{{{\bar{H}}}}_6}\varOmega \left( {u + l,{{{{\bar{Q}}}}_4},k + {m_6},{{{{\bar{H}}}}_4},n + {m_7},{{{{\bar{H}}}}_3} + {{{{\bar{Q}}}}_5}} \right) } \right\} } \right] . \end{aligned} \end{aligned}$$
(64)

Inserting \({{\bar{H}}}_2\), \({{\bar{H}}}_3\), \({{\bar{H}}}_4\), \({{\bar{H}}}_5\), \(\bar{H}_6\), \({{\bar{Q}}}_2\), \({{\bar{Q}}}_4\), \({{\bar{Q}}}_5\) in (53), (54), (55), (56), (57), (60), (61), (62) into (64) and then using the new notations of \(Q_2\), \(Q_4\), \(Q_5\), \(H_2\), \(H_3\) in (34), (36), (37), (39), (40), respectively, one can reduce (64)–(31), finishing the proof.

Appendix 2: Proof of Theorem 2

Using (5) to rewrite (8) as

$$\begin{aligned} {P_s} = \min \left\{ {A{g_1} + B,{I_{th}}/{g_5}} \right\} . \end{aligned}$$
(65)

According to the definition of the CDF, one obtains

$$\begin{aligned} \begin{aligned} {F_{{P_s}}}\left( x \right)&= \Pr \left\{ {{P_s} \le x} \right\} \\&= \Pr \left\{ {\min \left\{ {A{g_1} + B,{I_{th}}/{g_5}} \right\} \le x} \right\} \\&= 1 - \Pr \left\{ {\min \left\{ {A{g_1} + B,{I_{th}}/{g_5}} \right\} \ge x} \right\} \\&= 1 - \Pr \left\{ {A{g_1} + B \ge x} \right\} \Pr \left\{ {{I_{th}}/{g_5} \ge x} \right\} \\&= \left\{ {\begin{array}{ll} {1 - \Pr \left\{ {{g_1} \ge \left( {x - B} \right) /A} \right\} \Pr \left\{ {{g_5} \le {I_{th}}/x} \right\} ,} & {x \ge B} \\ {1 - \Pr \left\{ {{g_5} \le {I_{th}}/x} \right\} ,} & {x< B} \\ \end{array}} \right. \\&= \left\{ {\begin{array}{ll} {1 - \frac{{\varGamma \left( {{m_1},{\beta _1}\left[ {x - B} \right] /A} \right) }}{{\varGamma \left( {{m_1}} \right) }}\frac{{\gamma \left( {{m_5},{\beta _5}{I_{th}}/x} \right) }}{{\varGamma \left( {{m_5}} \right) }},} & {x \ge B} \\ {1 - \frac{{\gamma \left( {{m_5},{\beta _5}{I_{th}}/x} \right) }}{{\varGamma \left( {{m_5}} \right) }},} & {x < B} \\ \end{array}} \right. . \end{aligned} \end{aligned}$$
(66)

It is recalled that \(\gamma \left( {a,u} \right) = \int \limits _0^u {{e^{ - t}}{t^{a - 1}}dt}\) and \(\varGamma \left( {a,u} \right) = \int \limits _u^\infty {{e^{ - t}}{t^{a - 1}}dt}\) where u is a function of x. Applying the Leibnitz differentiation [28], the first derivatives of \(\gamma \left( {a,u} \right) \) and \(\varGamma \left( {a,u} \right) \) with respect to x are respectively given by

$$\begin{aligned} \frac{{d\gamma \left( {a,u} \right) }}{{dx}}&= {e^{ - u}}{u^{a - 1}}\frac{{du}}{{dx}}, \end{aligned}$$
(67)
$$\begin{aligned} \frac{{d\varGamma \left( {a,u} \right) }}{{dx}}&= - {e^{ - u}}{u^{a - 1}}\frac{{du}}{{dx}}. \end{aligned}$$
(68)

The PDF of \(P_s\) can be achieved by taking the derivative of \({F_{{P_s}}}\left( x \right) \) in (66) with respect to x as

$$\begin{aligned} {f_{{P_s}}}\left( x \right) = \left\{ {\begin{array}{ll} { - \frac{{\gamma \left( {{m_5},\frac{{{\beta _5}{I_{th}}}}{x}} \right) }}{{\varGamma \left( {{m_5}} \right) \varGamma \left( {{m_1}} \right) }}\frac{{d\varGamma \left( {{m_1},\frac{{{\beta _1}\left[ {x - B} \right] }}{A}} \right) }}{{dx}} - \frac{{\varGamma \left( {{m_1},\frac{{{\beta _1}\left[ {x - B} \right] }}{A}} \right) }}{{\varGamma \left( {{m_1}} \right) \varGamma \left( {{m_5}} \right) }}\frac{{d\gamma \left( {{m_5},\frac{{{\beta _5}{I_{th}}}}{x}} \right) }}{{dx}},} & {x \ge B} \\ { - \frac{{d\gamma \left( {{m_5},\frac{{{\beta _5}{I_{th}}}}{x}} \right) }}{{dx}},} & {x < B} \\ \end{array}} \right. \end{aligned}$$
(69)

By applying the results in (67) and (68) and after some simplifications, one reduces (69)–(41). This completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do-Dac, T., Ho-Van, K. Energy harvesting cognitive radio networks: security analysis for Nakagami-m fading. Wireless Netw 27, 1561–1572 (2021). https://doi.org/10.1007/s11276-019-02132-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02132-1

Keywords

Navigation