On the performance of cooperative cognitive networks with proactive relay selection | Wireless Networks Skip to main content
Log in

On the performance of cooperative cognitive networks with proactive relay selection

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper provides a general outage analysis framework for cooperative cognitive networks with proactive relay selection over non-identical Rayleigh fading channels and under both maximum transmit power and interference power constraints. We firstly propose an exact closed-form outage probability expression, which is then exploited for determining the diversity order and coding gain for proactive relay selection scenarios as well as deriving system performance limits at either large maximum transmit power or large maximum interference power. The derived performance metrics bring several insights into system performance behavior without the need of time-consuming Monte-Carlo simulations. Various results confirm the validity of the proposed derivations and show that cooperative cognitive networks with proactive relay selection incur performance saturation and their performance depends considerably on the number of involved relays. In addition, cooperative cognitive networks are significantly better than dual-hop counterparts without any cost of system resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Due to the nature of regenerating the received information without noise enhancement, the DF relays are investigated in this paper and hence, literature survey relevant to the AF relays are not necessarily presented (e.g., [2]).

  2. This means that \({\uplambda }_{tr}\) is the inverse of the fading power of the channel between the transmitter t and the receiver r, i.e., \({\uplambda }_{tr}=1/\mathcal {E}_{\left| h_{tr}\right| ^2}\{{\left| h_{tr} \right| ^2}\}\) where \(\mathcal {E}_X\{\cdot \}\) denotes the statistical expectation over the random variable X.

  3. Some authors (e.g., [10]) also refer this scheme as the max-min relay selection.

  4. Due to the nature of two-stage cooperative communications, the system capacity is given as \(C=\frac{1}{2}\log _2(1+\gamma _{SC})\). The capacity outage happens if \(C<U\) where U is the required transmission rate. Equivalently, the outage event happens if \(\gamma _{SC}<z\) where \(z=2^{2U}-1\), which shows the relation between the required transmission rate U and the SNR threshold z. For example, \(z=3,15\) corresponds \(U=1,2\) bps/Hz, respectively.

  5. The Monte-Carlo simulation is well-known, e.g. [31], and hence, a description of how it is conducted is omitted.

References

  1. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  2. Xia, M., & Aissa, S. (2013). Underlay cooperative AF relaying in cellular networks: Performance and challenges. IEEE Communications Magazine, 51(12), 170–176.

    Article  Google Scholar 

  3. Zhang, Z., Zhang, W., & Tellambura, C. (2009). OFDMA uplink frequency offset estimation via cooperative relaying. IEEE Transactions on Wireless Communications, 8(9), 4450–4456.

    Article  Google Scholar 

  4. Nabar, R. U., Bolcskei, H., & Kneubuhler, F. W. (2004). Fading relay channels: Performance limits and space–time signal design. IEEE Journal on Selected Areas in Communications, 22(6), 1099–1109.

    Article  Google Scholar 

  5. Zhuang, W., & Ismail, M. (2012). Cooperation in wireless communication networks. IEEE Wireless Communications, 19(2), 10–20.

    Article  Google Scholar 

  6. Zhang, Z., Zhang, W., & Tellambura, C. (2009). Cooperative OFDM channel estimation in the presence of frequency offsets. IEEE Transactions on Vehicular Technology, 58(7), 3447–3459.

    Article  Google Scholar 

  7. Laneman, J. N., & Wornell, G. W. (2003). Distributed spacetime-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 49(10), 2415–2425.

    Article  MathSciNet  MATH  Google Scholar 

  8. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  9. Yeoh, P. L., Elkashlan, M., Chen, Z., & Collings, I. B. (2011). SER of multiple amplify-and-forward relays with selection diversity. IEEE Transactions on Communications, 59(8), 2078–2083.

    Article  Google Scholar 

  10. Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). Simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.

    Article  Google Scholar 

  11. Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.

    Article  MathSciNet  Google Scholar 

  12. Sun, H., & Naraghi-Pour, M. (2014). Decode-and-forward relay selection with imperfect CSI in cognitive relay networks. In Proceedings of IEEE military communications conference, Baltimore, Maryland, USA, pp. 416–421, Oct. 6–8.

  13. Liping, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.

    Article  Google Scholar 

  14. Si, J., Li, Z., Chen, X., Hao, B. J., & Liu, Z. J. (2011). On the performance of cognitive relay networks under primary user’s outage constraint. IEEE Communications Letters, 15(4), 422–424.

    Article  Google Scholar 

  15. Zhang, X., Yan, Z., Gao, Y., & Wang, W. (2013). On the study of outage performance for cognitive relay networks (CRN) with the Nth best-relay selection in Rayleigh-fading channels. IEEE Wireless Communications Letters, 2(1), 110–113.

    Article  Google Scholar 

  16. Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.

    Article  Google Scholar 

  17. Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.

    Article  Google Scholar 

  18. Giang, N.H., Bao, V.N.Q., & Le, H.N. (2013). Cognitive underlay communications with imperfect CSI: Network design and performance analysis. In Proceedings of IEEE ATC, HoChiMinh City, Vietnam, pp. 18–22, 15–17.

  19. Thanh, T. L., Bao, V. N. Q., & An, B. (2013). On the performance of outage probability in underlay cognitive radio with imperfect CSI. In Proceedings of IEEE ATC, HoChiMinh City, Vietnam, pp. 125–130, 15–17.

  20. Wu, Q., Zhang, Z., & Wang, J. (2013). Outage analysis of cognitive relay networks with relay selection under imperfect CSI environment. IEEE Communications Letters, 17(7), 1297–1300.

    Article  MathSciNet  Google Scholar 

  21. Si, J., Li, Z., Huang, H., Chen, J., & Gao, R. (2012). Capacity analysis of cognitive relay networks with the PU’s interference. IEEE Communications Letters, 16(12), 2020–2023.

    Article  Google Scholar 

  22. Bao, V. N. Q., & Duong, T. Q. (2012). Exact outage probability of cognitive underlay DF relay networks with best relay selection. IEICE Transactions on Communications, E95–B(6), 2169–2173.

    Article  Google Scholar 

  23. Mokari, N., Parsaeefard, S., Saeedi, H., Azmi, P., & Hossain, E. (2015). Secure robust ergodic uplink resource allocation in relay assisted cognitive radio networks. IEEE Transactions on Signal Processing, 63(2), 291–304.

    Article  MathSciNet  Google Scholar 

  24. Chen, Y., Ge, J., & Bu, Q. (2014). Outage and diversity analysis of cognitive relay networks with direct link under interference constraints over Nakagami-m fading. In Proceedings of IEEE CIT, Xian, Shaanxi, China, 11–13, pp. 88–93.

  25. Hanif, M., Yang, H. C., & Alouini, M. S. (2015). Receive antenna selection for underlay cognitive radio with instantaneous interference constraint. IEEE Signal Processing Letters, 22(6), 738–742.

    Article  Google Scholar 

  26. Vucetic, B., & Yuan, J. (2003). Space–time coding. New Jersey: Wiley.

    Book  Google Scholar 

  27. Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  28. Ibrahim, A. S., Sadek, A. K., Su, W., & Liu, K. J. R. (2006). Relay selection in multi-node cooperative communications: When to cooperate and whom to cooperate with?. In Proceedings of IEEE GlobeCom, pp. 1–5.

  29. Duong, T. Q., da Costa, D. B., Elkashlan, M., & Bao, V. N. Q. (2012). Cognitive amplify-and-forward relay networks over Nakagami-m fading. IEEE Transactions on Vehicular Technology, 61(5), 2368–2374.

    Article  Google Scholar 

  30. Duong, T. Q., da Costa, D. B., Tsiftsis, T. A., Zhong, C., & Nallanathan, A. (2012). Outage and diversity of cognitive relaying systems under spectrum sharing environments in Nakagami-m fading. IEEE Communications Letters, 16(12), 2075–2078.

    Article  Google Scholar 

  31. Thomopoulos, N. T. (2013). Essentials of Monte Carlo simulation: Statistical methods for building simulation models. New York: Springer.

    Book  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 102.04-2014.42

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuong Ho-Van.

Appendices

Appendix 1: Proof of Lemma 1

We rewrite \(\mathcal {G}_1\) in (21) as

$$\begin{aligned} {\mathcal {G}_1} = \frac{{{{\uplambda }_{SD}}}}{\tau }\int \limits _{x = \tau }^\infty {\int \limits _{{y_1} = 0}^\infty {\ldots \int \limits _{{y_K} = 0}^\infty {x\prod \limits _{k = 1}^K {\left( {1 + \frac{{\min \left( {y_k^{ - 1}\tau ,1} \right) }}{{{\uplambda }_{S{R_k}}^{ - 1}{{\uplambda }_{{R_k}D}}\tau }}x} \right) } \left( {\prod \limits _{k = 1}^K {\frac{{{{\uplambda }_{{R_k}D}}}}{{\min \left( {y_k^{ - 1}\tau ,1} \right) }}{f_{{Y_k}}}\left( {{y_k}} \right) d{y_k}} } \right) {f_X}\left( x \right) dx} } }. \end{aligned}$$
(26)

Using the equality \(\prod \limits _{k = 1}^K {\left( {1 + {a_k}} \right) } = 1 + \sum \limits _{u = 1}^{K - 1} {\sum \limits _{{s_1} = 1}^{K - u + 1} {\sum \limits _{{s_2} = {s_1} + 1}^{K - u + 2} { \cdots \sum \limits _{{s_u} = {s_{u - 1}} + 1}^K {\prod \limits _{l = 1}^u {{a_{{s_l}}}} } } } } + \prod \limits _{k = 1}^K {{a_k}}\), one obtains

$$\begin{aligned} {\mathcal {G}_1} = \frac{{{{\uplambda }_{SD}}}}{\tau }\int \limits _0^\infty {\ldots \int \limits _0^\infty {\left( {{\mathcal {G}_{1\emptyset }} + \sum \limits _{u = 1}^{K - 1} {\sum \limits _{{s_1} = 1}^{K - u + 1} {\sum \limits _{{s_2} = {s_1} + 1}^{K - u + 2} { \cdots \sum \limits _{{s_u} = {s_{u - 1}} + 1}^K {{\mathcal {G}_{1u}}} } } } + {\mathcal {G}_{1K}}} \right) } } \prod \limits _{k = 1}^K {\left( {\frac{{{{\uplambda }_{{R_k}D}}{f_{{Y_k}}}\left( {{y_k}} \right) }}{{\min \left( {y_k^{ - 1}\tau ,1} \right) }}d{y_k}} \right) }, \end{aligned}$$
(27)

where

$$\begin{aligned} {\mathcal {G}_{1i}}= & {} \left\{ {\prod \limits _{m \in {T_i}} {\frac{{{{\uplambda }_{S{R_m}}}}}{{{{\uplambda }_{{R_m}D}}\tau }}\min \left( {\frac{\tau }{{{y_m}}},1} \right) } } \right\} \int \limits _\tau ^\infty {{x^{\left| {{T_i}} \right| + 1}}{f_X}\left( x \right) dx} \nonumber \\= & {} \left\{ {\prod \limits _{m \in {T_i}} {\frac{{{{\uplambda }_{S{R_m}}}}}{{{{\uplambda }_{{R_m}D}}\tau }}\min \left( {\frac{\tau }{{{y_m}}},1} \right) } } \right\} {e^{ - {{\uplambda }_{SL}}\tau }}\left( {\sum \limits _{l = 0}^{\left| {{T_i}} \right| + 1} {\frac{{\left( {\left| {{T_i}} \right| + 1} \right) !{\tau ^l}}}{{l!{\uplambda }_{SL}^{\left| {{T_i}} \right| + 1 - l}}}} } \right) . \end{aligned}$$
(28)

It is noted that the integral in (28) is completely solved in closed-form by integrating by parts. Plugging the above into (27), one obtains (22) where

$$\begin{aligned} {{\tilde{\mathcal {G}}}_{1i}} = \int \limits _0^\infty {\ldots \int \limits _0^\infty {{\mathcal {G}_{1i}}} } \prod \limits _{k = 1}^K {\left( {\frac{{{{\uplambda }_{{R_k}D}}{f_{{Y_k}}}\left( {{y_k}} \right) }}{{\min \left( {y_k^{ - 1}\tau ,1} \right) }}d{y_k}} \right) } \end{aligned}$$
(29)

Substituting (28) in the above, we reduce (29) to

$$\begin{aligned} {{\tilde{\mathcal {G}}}_{1i}} = \frac{{{e^{ - {{\uplambda }_{SL}}\tau }}}}{{{\tau ^{\left| {{T_i}} \right| }}}}\left( {\sum \limits _{l = 0}^{\left| {{T_i}} \right| + 1} {\frac{{\left( {\left| {{T_i}} \right| + 1} \right) !{\tau ^l}}}{{l!{\uplambda }_{SL}^{\left| {{T_i}} \right| + 1 - l}}}} } \right) \left( {\prod \limits _{m \in {T_i}} {{{\uplambda }_{S{R_m}}}} } \right) \prod \limits _{q \in \bar{T}_i} {{{\uplambda }_{{R_q}D}}\int \limits _0^\infty {\frac{{{f_{{Y_q}}}\left( {{y_q}} \right) }}{{\min \left( {y_q^{ - 1}\tau ,1} \right) }}d{y_q}} }. \end{aligned}$$
(30)

Using the fact that \({f_{{Y_q}}}\left( {{y_q}} \right) = {{\uplambda }_{{R_q}L}}{e^{ - {{\uplambda }_{{R_q}L}}{y_q}}}\), one can solve the integral in (30) in closed-form as follows

$$\begin{aligned} \int \limits _0^\infty {\frac{{{{\uplambda }_{{R_q}L}}{e^{ - {{\uplambda }_{{R_q}L}}x}}}}{{\min \left( {{x^{ - 1}}\tau ,1} \right) }}dx} = \frac{{{{\uplambda }_{{R_q}L}}}}{\tau }\int \limits _\tau ^\infty {x{e^{ - {{\uplambda }_{{R_q}L}}x}}dx + \int \limits _0^\tau {{{\uplambda }_{{R_q}L}}{e^{ - {{\uplambda }_{{R_q}L}}x}}dx} } = 1 + \frac{{{e^{ - {{\uplambda }_{{R_q}L}}\tau }}}}{{{{\uplambda }_{{R_q}L}}\tau }}, \end{aligned}$$
(31)

where the second integral is solved by integrating by parts.

Inserting (31) into (30), the closed form of \(\tilde{\mathcal {G}}_{1i}\) can be expressed as (23), which completes the proof.

Appendix 2: Proof of Lemma 2

We rewrite \(\mathcal {G}_2\) in (21) as

$$\begin{aligned} {\mathcal {G}_2}= & {} {{\uplambda }_{SD}}\int \limits _0^\tau {{f_X}\left( x \right) dx} \prod \limits _{k = 1}^K {\int \limits _0^\infty {\left( {{{\uplambda }_{S{R_k}}} + \frac{{{{\uplambda }_{{R_k}D}}}}{{\min \left( {y_k^{ - 1}\tau ,1} \right) }}} \right) } } {f_{{Y_k}}}\left( {{y_k}} \right) d{y_k}\nonumber \\= & {} {{\uplambda }_{SD}}\int \limits _0^\tau {{f_X}\left( x \right) dx} \prod \limits _{k = 1}^K {\left( {{{\uplambda }_{S{R_k}}}\int \limits _0^\infty {{f_{{Y_k}}}\left( {{y_k}} \right) d{y_k}} + {{\uplambda }_{{R_k}D}}\int \limits _0^\infty {\frac{{{f_{{Y_k}}}\left( {{y_k}} \right) }}{{\min \left( {y_k^{ - 1}\tau ,1} \right) }}d{y_k}} } \right) } \end{aligned}$$
(32)

It is straightforward to infer that \(\int \limits _0^\tau {{f_X}\left( x \right) dx} = 1 - {e^{ - {{\uplambda }_{SL}}\tau }}\) and \({\int \limits _0^\infty {{f_{{Y_k}}}\left( {{y_k}} \right) d{y_k}} }=1\) while \(\int \limits _0^\infty {\frac{{{f_{{Y_k}}}\left( {{y_k}} \right) }}{{\min \left( {y_k^{ - 1}\tau ,1} \right) }}d{y_k}} = 1 + \frac{{{e^{ - {{\uplambda }_{{R_k}L}}\tau }}}}{{{{\uplambda }_{{R_k}L}}\tau }}\) with the aid of (31). Plugging all these results in (32), one obtains (24) which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho-Van, K. On the performance of cooperative cognitive networks with proactive relay selection. Wireless Netw 22, 2131–2141 (2016). https://doi.org/10.1007/s11276-015-1090-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1090-1

Keywords

Navigation