Design and Implementation of a Power-aware FFT Core for OFDM-based DSA-enabled Cognitive Radios | Journal of Signal Processing Systems Skip to main content
Log in

Design and Implementation of a Power-aware FFT Core for OFDM-based DSA-enabled Cognitive Radios

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This research work presents the design and the physical implementation of a power aware FFT core for OFDM-based, dynamic spectrum access (DSA) enabled cognitive radios. The FFT core is equipped with a pruning engine that allows the run-time removal of dummy operations (e.g. multiplications by a zero term) related to the pruning of sub-carriers of the communication systems. The pruning algorithm introduced by this research work utilizes a reduced size configuration matrix, which limits the memory requirements’ overhead. Finally, the physical implementation of the FFT on a 45 nm technology node showed that, for a 8 % area overhead, the total power saving settles around 10 % when in the presence of a medium to high pruning level, justifying the silicon area overhead introduced by the pruning unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. URL http://www.wirelessinnovation.org/.

  2. Airoldi, R., Anjum, O., Garzia, F., Nurmi, J., Wyglinski, A.M. (2010). Energy-efficient fast fourier transforms for cognitive radio systems. IEEE Micro Magazine, 30(6), 66–76.

    Article  Google Scholar 

  3. Airoldi, R., Garzia, F., Nurmi, J. (2011). Efficient FFT pruning algorithm for non-contiguous OFDM systems. In: Proceedings of the 2011 Conference on Design and Architectures for Signal and Image Processing (DASIP), (pp. 1–6).

  4. Alves, R.G., Osorio, P.L., Swamy, M.N.S. (2000). General FFT pruning algorithm. In: Proceedings of 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 3, (pp. 1192–1195).

  5. Becker, J., Hubner, M., Hettich, G., Constapel, R., Eisenmann, J., Luka, J. (2007). Dynamic and partial fpga exploitation. Proceedings of the IEEE, 95(2), 438–452.

    Article  Google Scholar 

  6. Beltran, F., Gutierrez, J., Melus, J. (2010). Technology and market conditions toward a new competitive landscape in the wireless access market. IEEE Communications Magazine, 48(6), 46–52.

    Article  Google Scholar 

  7. Brakensiek, J., Oelkrug, B., Bucker, M., Uffmann, D., Droge, A., Darianian, M., Otte, M. (2002). Software radio approach for re-configurable multi-standard radios. In: Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 1, (pp. 110–114).

  8. Chen, C.M., Hung, C.C., Huang, Y.H. (2010). An energy-efficient partial FFT processor for the OFDMA communication system. IEEE Transactions on Circuits and Systems II: Express Briefs, 57(2), 136–140.

    Article  Google Scholar 

  9. Cooley, J.W., & Tukey, J.W. (1965). An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation, 19, 297–301.

    Article  MATH  MathSciNet  Google Scholar 

  10. Cucchi, M., Revanna, D., Airoldi, R., Nurmi, J. (2013). Design and Implementation of a FFT pruning Engine for DSA-Enabled Cognitive Radios. In: Proceedings of the 2013 Wireless Innovation Forum, European Conference on Communication Technologies and Software Defined Radios (SDR-WinnComm-Europe), (pp. 1–7).

  11. Duhamel, P., & Hollmann, H. (1984). ‘Split radix’ FFT algorithm. Electronics Letters, 20(1), 14–16.

    Article  Google Scholar 

  12. (2002). Spectrum policy task force report. Tech. rep., ET Docket No. 02135.

  13. Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., Thomas, T. (2010). LTE-advanced: next-generation wireless broadband technology. IEEE Wireless Communications, 17(3), 10–22.

    Article  Google Scholar 

  14. Ghosh, A., Wolter, D., Andrews, J., Chen, R. (2005). Broadband wireless access with wimax/802.16: current performance benchmarks and future potential. IEEE Communications Magazine, 43(2), 129–136.

    Article  Google Scholar 

  15. Jang, I.G., Piao, Z.Y., Dong, Z.H., Chung, J.G., Lee, K.Y. (2011). Low-power FFT design for NC-OFDM in cognitive radio systems. In: Proceedings of the 2011 IEEE International Symposium on Circuits and Systems (ISCAS), (pp. 2449–2452).

  16. Jondral, F.K. (2005). Software-defined radio: basics and evolution to cognitive radio. EURASIP Journal of Wireless Communications and Networking, 2005(3), 275–283.

    Article  MATH  Google Scholar 

  17. Markel, J. (1971). FFT pruning. IEEE Transactions on Audio Electroacoustics, 19(4), 305–311.

    Article  Google Scholar 

  18. Mitola, J., & Maguire G. Q., Jr. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  19. Poston, J.D., & Horne, W.D. (2005). Discontiguous OFDM Considerations for Dynamic Spectrum Access in Idle TV Channels. In: Proceedings of IEEE International Symposium on New Frontiers Dynamic Spectrum Access Networks, vol. 1, (pp. 607–610).

  20. Rajbanshi, R., Wyglinski, A.M., Minden, G.J. (2006). An Efficient Implementation of NC-OFDM Transceivers for Cognitive Radios. In: Proceedings of 1st Int Cognitive Radio Oriented Wireless Networks and Communications Conference, (pp. 1–5).

  21. Revanna, D., Anjum, O., Cucchi, M., Airoldi, R., Nurmi, J. (2013). A scalable FFT processor architecture for OFDM based communication systems. In: Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013 International Conference on, (pp. 19–27).

  22. Baker, M. (2009). LTE The UMTS Long Term Evolution. Wiley Sesia, S., & Toufik, I. (Eds.)

  23. Skinner, D. (1976). Pruning the decimation in-time FFT algorithm. IEEE Transactions on Acoustics, Speech, Signal Processing, 24(2), 193–194.

    Article  Google Scholar 

  24. Sorensen, H., & Burrus, C. (1993). Efficient computation of the DFT with only a subset of input or output points. IEEE Transactions on Signal Processing, 41(3), 1184–1200.

    Article  MATH  Google Scholar 

  25. Takala, J., & Punkka, K. (2005). Butterfly Unit supporting radix-4 and radix-2 FFT. In: Proceedings of International Workshop Spectral Methods and Multirate Signal Processing, (pp. 47–53).

  26. Vassis, D., Kormentzas, G., Rouskas, A., Maglogiannis, I. (2005). The IEEE 802.11g standard for high data rate WLANs. IEEE Network, 19(3), 21–26.

    Article  Google Scholar 

  27. Vennila, C., Palaniappan, C., Krishna, K., Lakshminarayanan, G., Ko, S.B. (2012). Dynamic partial reconfigurable FFT/IFFT pruning for OFDM based Cognitive radio. In: Proceedings of the 2012 IEEE International Symposium on Circuits and Systems (ISCAS), (pp. 33–36).

  28. Xu, Y., & Lim, M.S. (2011). An efficient design of split-radix FFT pruning for OFDM based Cognitive Radio system. In: Proceedings of the 2011 International SoC Design Conference (ISOCC), (pp. 368–372).

  29. Yaghoobi, H. (2004). Scalable OFDMA Physical Layer in IEEE 802.16 WirelessMAN.

  30. Zhao, Q., & Sadler, B.M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing magazine, 24(3), 79–89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Airoldi.

Additional information

This work was funded by the Academy of Finland under contract #258506 (DEFT: Design of a Highly-parallel Heterogeneous MP-SoC Architecture for Future Wireless Technologies).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Airoldi, R., Campi, F., Cucchi, M. et al. Design and Implementation of a Power-aware FFT Core for OFDM-based DSA-enabled Cognitive Radios. J Sign Process Syst 78, 257–265 (2015). https://doi.org/10.1007/s11265-014-0894-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-014-0894-z

Keywords

Navigation