Directed Acyclic Graph Continuous Max-Flow Image Segmentation for Unconstrained Label Orderings | International Journal of Computer Vision Skip to main content
Log in

Directed Acyclic Graph Continuous Max-Flow Image Segmentation for Unconstrained Label Orderings

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Label ordering, the specification of subset–superset relationships for segmentation labels, has been of increasing interest in image segmentation as they allow for complex regions to be represented as a collection of simple parts. Recent advances in continuous max-flow segmentation have widely expanded the possible label orderings from binary background/foreground problems to extendable frameworks in which the label ordering can be specified. This article presents Directed Acyclic Graph Max-Flow image segmentation which is flexible enough to incorporate any label ordering without constraints. This framework uses augmented Lagrangian multipliers and primal–dual optimization to develop a highly parallelized solver implemented using GPGPU. This framework is validated on synthetic, natural, and medical images illustrating its general applicability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bae, E., Tai, X. C., & Yuan, J. (2015). Maximizing flows with message-passing: Computing spatially continuous min-cuts. In International workshop on energy minimization methods in computer vision and pattern recognition (pp. 15–28). Springer International Publishing.

  • Bae, E., Yuan, J., Tai, X. C., & Boykov, Y. (2014). A fast continuous max-flow approach to non-convex multi-labeling problems. In Efficient algorithms for global optimization methods in computer vision (pp. 134–154). Springer Berlin Heidelberg.

  • Baxter, J. S., Rajchl, M., Yuan, J., & Peters, T. M. (2014). A continuous max-flow approach to general hierarchical multi-labeling problems. arXiv preprint arXiv:1404.0336.

  • Baxter, J. S., Yuan, J., Drangova, M., Peters, T. M., & Inoue, J. (2016). Shape complexes in continuous max-flow segmentation. In SPIE medical imaging (978434 pp.). International Society for Optics and Photonics.

  • Bertsekas, D. P. (1999). Nonlinear programming (pp. 1–60). Belmont: Athena scientific.

  • Billionnet, A., & Minoux, M. (1985). Maximizing a supermodular pseudoboolean function: A polynomial algorithm for supermodular cubic functions. Discrete Applied Mathematics, 12(1), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Boros, E., & Hammer, P. L. (2002). Pseudo-boolean optimization. Discrete Applied Mathematics, 123(1), 155–225.

    Article  MathSciNet  MATH  Google Scholar 

  • Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(9), 1124–1137.

    Article  MATH  Google Scholar 

  • Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 23(11), 1222–1239.

    Article  Google Scholar 

  • Censor, Y., & Zenios, S. A. (1992). Proximal minimization algorithm with d-functions. Journal of Optimization Theory and Applications, 73(3), 451–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Chambolle, A. (2004). An algorithm for total variation minimization and applications. Journal of Mathematical imaging and vision, 20(1–2), 89–97.

    MathSciNet  Google Scholar 

  • Chambolle, A., & Pock, T. (2011). A first-order primal–dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1), 120–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, G., & Teboulle, M. (1993). Convergence analysis of a proximal-like minimization algorithm using bregman functions. SIAM Journal on Optimization, 3(3), 538–543.

    Article  MathSciNet  MATH  Google Scholar 

  • Cocosco, C. A., Kollokian, V., Kwan, R. K. S., Pike, G. B., & Evans, A. C. (1997). Brainweb: Online interface to a 3D MRI simulated brain database. In NeuroImage.

  • Delage, E., Lee, H., & Ng, A. Y. (2006). A dynamic bayesian network model for autonomous 3d reconstruction from a single indoor image. In 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06) (Vol. 2, pp. 2418–2428). IEEE.

  • Delong, A., & Boykov, Y. (2009). Globally optimal segmentation of multi-region objects. In International conference on computer vision (ICCV) (pp. 285–292). IEEE.

  • Delong, A., Gorelick, L., Veksler, O., & Boykov, Y. (2012). Minimizing energies with hierarchical costs. International journal of computer vision, 100(1), 38–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Denk, C., & Rauscher, A. (2010). Susceptibility weighted imaging with multiple echoes. Journal of Magnetic Resonance Imaging, 31(1), 185–191.

    Article  Google Scholar 

  • Ekeland, I., & Temam, R. (1999). Convex analysis and variational problems.Society for Industrial and Applied Mathematics.

  • Giusti, E. (1984). Minimal surfaces and functions of bounded variation. Springer.

  • Gulshan, V., Rother, C., Criminisi, A., Blake, A., & Zisserman, A. (2010). Geodesic star convexity for interactive image segmentation. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3129–3136). IEEE.

  • Guo, F., Yuan, J., Rajchl, M., Svenningsen, S., Capaldi, D. P., Sheikh, K., et al. (2015). Globally optimal co-segmentation of three-dimensional pulmonary 1 h and hyperpolarized 3 he mri with spatial consistence prior. Medical Image Analysis, 23(1), 43–55.

    Article  Google Scholar 

  • Haacke, E. M., Xu, Y., Cheng, Y. C. N., & Reichenbach, J. R. (2004). Susceptibility weighted imaging (swi). Magnetic Resonance in Medicine, 52(3), 612–618.

    Article  Google Scholar 

  • Hoiem, D., Efros, A. A., & Hebert, M. (2007). Recovering surface layout from an image. International Journal of Computer Vision, 75(1), 151–172.

    Article  MATH  Google Scholar 

  • Hong, M., & Luo, Z. Q. (2012). On the linear convergence of the alternating direction method of multipliers. arXiv preprint arXiv:1208.3922.

  • Ishikawa, H. (2003). Exact optimization for markov random fields with convex priors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25(10), 1333–1336.

    Article  Google Scholar 

  • Ivănescu, P. L. (1965). Some network flow problems solved with pseudo-boolean programming. Operations Research, 13(3), 388–399.

    Article  MathSciNet  MATH  Google Scholar 

  • Jang, J., Kim, H. W., & Kim, Y. S. (2014). Co-segmentation of inter-subject brain magnetic resonance images. In IEEE international conference on ubiquitous robots and ambient intelligence (URAI) (pp. 80–84). IEEE.

  • Koch, L. M., Rajchl, M., Tong, T., Passerat-Palmbach, J., Aljabar, P., & Rueckert, D. (2015). Multi-atlas segmentation as a graph labelling problem: Application to partially annotated atlas data. In Information processing in medical imaging (pp. 221–232). Springer.

  • Kolmogorov, V., & Zabin, R. (2004). What energy functions can be minimized via graph cuts? Pattern Analysis and Machine Intelligence, IEEE Transactions on, 26(2), 147–159.

    Article  Google Scholar 

  • Pock, T., Chambolle, A., Cremers, D., & Bischof, H. (2009). A convex relaxation approach for computing minimal partitions. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 810–817). IEEE.

  • Potts, R. B. (1952). Some generalized order-disorder transformations. In Mathematical proceedings of the Cambridge Philosophical Society (Vol. 48, pp. 106–109). Cambridge Univ Press.

  • Rajchl, M., Baxter, J. S., McLeod, A. J., Yuan, J., Qiu, W., Peters, T. M., & Khan, A. R. (2016). Hierarchical max-flow segmentation framework for multi-atlas segmentation with Kohonen self-organizing map based Gaussian mixture modeling. Medical Image Analysis, 27, 45–56.

  • Rajchl, M., Yuan, J., White, J., Ukwatta, E., Stirrat, J., Nambakhsh, C., et al. (2014). Interactive hierarchical-flow segmentation of scar tissue from late-enhancement cardiac mr images. Medical Imaging, IEEE Transactions on, 33(1), 159–172.

    Article  Google Scholar 

  • Rockafellar, R. T. (1976). Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization, 14(5), 877–898.

    Article  MathSciNet  MATH  Google Scholar 

  • Schlesinger, D., & Flach, B. (2006). Transforming an arbitrary minsum problem into a binary one. TU: Fak. Informatik.

  • Su, X., & Chen, W. (2004). Reliability-guided phase unwrapping algorithm: A review. Optics and Lasers in Engineering, 42(3), 245–261.

    Article  Google Scholar 

  • Thomas, B., Somasundaram, S., Thamburaj, K., Kesavadas, C., Gupta, A. K., Bodhey, N. K., et al. (2008). Clinical applications of susceptibility weighted mr imaging of the brain-a pictorial review. Neuroradiology, 50(2), 105–116.

    Article  Google Scholar 

  • van der Lijn, F., den Heijer, T., Breteler, M. M., & Niessen, W. J. (2008). Hippocampus segmentation in mr images using atlas registration, voxel classification, and graph cuts. Neuroimage, 43(4), 708–720.

    Article  Google Scholar 

  • Veksler, O. (2008). Star shape prior for graph-cut image segmentation. In Computer vision—ECCV 2008 (pp. 454–467). Springer.

  • Yuan, J., Bae, E., & Tai, X. C. (2010). A study on continuous max-flow and min-cut approaches. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2217–2224). IEEE.

  • Yuan, J., Bae, E., Tai, X. C., & Boykov, Y. (2010). A continuous max-flow approach to Potts model. In Computer vision—ECCV 2010 (pp. 379–392). Springer.

  • Yuan, J., Qiu, W., Ukwatta, E., Rajchl, M., Sun, Y., & Fenster, A. (2012). An efficient convex optimization approach to 3D prostate MRI segmentation with generic star shape prior. Prostate MR Image Segmentation Challenge, MICCAI, 7512, 82–89.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Zahra Hosseini, Maria Drangova, and Ravi Menon’s laboratory at the Robarts Research Institute Imaging Laboratories for their assistance in collecting and processing MRI phase data. John S.H. Baxter and A. Jonathan McLeod were funded through the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. H. Baxter.

Additional information

Communicated by Julien Mairal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baxter, J.S.H., Rajchl, M., McLeod, A.J. et al. Directed Acyclic Graph Continuous Max-Flow Image Segmentation for Unconstrained Label Orderings. Int J Comput Vis 123, 415–434 (2017). https://doi.org/10.1007/s11263-017-0994-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-017-0994-x

Keywords

Navigation