Learning to Match: Deriving Optimal Template-Matching Algorithms from Probabilistic Image Models | International Journal of Computer Vision Skip to main content
Log in

Learning to Match: Deriving Optimal Template-Matching Algorithms from Probabilistic Image Models

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Finding correspondences between images by template matching is a common problem in image understanding. Although a variety of solutions have been proposed, most of them rely on the arbitrary choice of a template and a matching function. Often, different cost functions lead to different results, and the choice of a good cost for a specific application remains an art. Statistical models on the other hand, allow us to derive optimal learning and matching algorithms from modeling assumptions using likelihood maximization principles. The key contribution of this paper is the development of a statistical framework for learning what function to optimize from training examples. We present a family of statistical models for grayscale images, which allow us to derive optimal template-matching algorithms. The intensity at each pixel is described by a random variable whose distribution is encoded by a deformable template. Firstly, we assume the intensity distribution to be Gaussian and derive an intensity-matching algorithm, which is a generalization of the classical sum-of-squared differences. Then, we introduce a hidden segmentation variable in the probabilistic model and derive a segmentation-matching algorithm that can handle photometric variations. Both models are exemplified on the automatic detection of anatomical landmarks in brain Magnetic Resonance Images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Allassonniere, S., Kuhn, E., Trouvé, A., & Amit, Y. (2006). Generative model and consistent estimation algorithms for non-rigid deformable models. In Acoustics, speech and signal processing, 2006. ICASSP 2006 proceedings. 2006 IEEE international conference on 5, V–V.

  • Allassonnière, S., Amit, Y., & Trouvé, A. (2007). Toward a coherent statistical framework for dense deformable template estimation. Journal of the Royal Statistical Society B, 69, 3–29.

    Google Scholar 

  • Arad, N., Dyn, N., Reispeld, D., & Yeshurun, Y. (1994). Image warping by radial basis functions: application to facial expressions. CVGIP: Graphical Models and Image Processing, 56, 161–172.

    Article  Google Scholar 

  • Ashburner, J., & Friston, K. J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7, 254–266.

    Article  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839–851.

    Article  Google Scholar 

  • Bajcsy, R., Kovac̆ic̆, S. (1989). Multiresolution elastic matching. Computer Vision, Graphics and Image Processing, 46, 1–21.

    Article  Google Scholar 

  • Barnea, D. I., & Silverman, H. F. (1972). A class of algorithms for fast digital image registration. IEEE Transactions on Computers, 21(2), 179–186.

    Article  MATH  Google Scholar 

  • Bookstein, F. L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6), 567–585.

    Article  MATH  Google Scholar 

  • Bookstein, F. L. (1992). Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bro-Nielsen, M., & Gramkow, C. (1996). Fast fluid registration of medical images. In Lecture notes in computer science : Vol. 1131. Proceeding of 4th international conference on visualization in biomedical computing (VBC’96) (pp. 267–276). Berlin: Springer.

    Google Scholar 

  • Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., & Marshal, G. (1995). Automated multi-modality image registration based on information theory. In C. B. Y. Bizais & R. D. Paola (Eds.), Information processing in medical imaging (pp. 263–274). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Cox, R. (1996). Afni: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.

    Article  Google Scholar 

  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection (pp. 886–893).

  • Davatzikos, C. (1997). Spatial transformation and registration of brain imaging using elastically deformable models. Computer Vision and Image Understanding, 2(66), 207–222.

    Article  Google Scholar 

  • Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of Royal Statistical Society, 39, 1–38.

    MATH  MathSciNet  Google Scholar 

  • Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Ségonne, F., Quinn, B. T., & Dale, A. M. (2004). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23, S69–S84.

    Article  Google Scholar 

  • Frantz, S., Rohr, K., & Stiehl, H. (2000). Localization of 3D anatomical point landmarks in 3D tomographic images using deformable models. In Lecture notes in computer science : Vol. 1935. Proc. MICCAI (pp. 492–501). Berlin: Springer.

    Google Scholar 

  • Friston, K. J., Ashburner, J., Poline, J. B., Frith, C. D., Heather, J. D., & Frackowiak, R. (1995). Spatial registration and normalisation of images. Human Brain Mapping, 2, 165–189.

    Article  Google Scholar 

  • Glasbey, C., & Mardia, K. (2001). A penalized likelihood approach to image warping (with discussion). Journal of the Royal Statistical Society B, 63, 465–514.

    Article  MATH  MathSciNet  Google Scholar 

  • Goshtasby, A., Staib, L., Studholme, C., & Terzopoulos, D. (2003). Non-rigid image registration: Guest editors’ introduction. Computer Vision and Image Understanding, 89(2/3), 109–113.

    Article  Google Scholar 

  • Grenander, U., & Miller, M. (1998). Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics, 4, 617–694. LVI.

    MathSciNet  Google Scholar 

  • Hartkens, T., Rohr, K., & Stiehl, H. (1999). Performance of 3D differential operators for the detection of anatomical landmarks in MR and CT images. In Medical imaging 1999: image processing. Proceedings of the SPIE international symposium (Vol. 5032, pp. 32–43).

  • Izard, C., Jedynak, B., & Stark, C. (2006). Spline-based probabilistic model for anatomical landmark detection. In R. Larsen, M. Nielsen, & J. Sporring (Eds.), Lecture notes in computer science : Vol. 4190. Medical imaging computing and computer assisted intervention (MICCAI) (pp. 849–856). Berlin: Springer.

    Chapter  Google Scholar 

  • Joshi, S., & Miller, M. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9, 1357–1370.

    Article  MATH  MathSciNet  Google Scholar 

  • Leemput, K. V. (2001). A statistical framework for partial volume segmentation. In W. Niessen & M. Viergever (Eds.), Lecture notes in computer science : Vol. 2208. MICCAI (pp. 204–212). Berlin: Springer.

    Google Scholar 

  • Lester, H., Arridge, S., Jansons, K., Lemieux, L., Hajnal, J., & Oatridge, A. (1999). Non-linear registration with the variable viscosity fluid algorithm. In Information processing in medical imaging (IPMI’99) (pp. 238–251).

  • Levin, A., & Weiss, Y. (2006). Learning to combine bottom-up and top-down segmentation. In Lecture notes in computer science : Vol. 3954. ECCV (pp. 581–594). Berlin: Springer.

    Google Scholar 

  • Li, H., Manjunath, B. S., & Mitra, S. K. (1995). A contour–based approach to multisensor image registration. IEEE Transactions on Image Processing, 4(3), 320–334.

    Article  Google Scholar 

  • Lowe, D. (2003). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 20, 91–110.

    Google Scholar 

  • Maes, F., Collignon, A., Vandermeulen, D., Marshal, G., & Suetens, P. (1997). Multimodality image registration by maximization of mutual information. IEEE Transactions on Medical Imaging, 16, 187–198.

    Article  Google Scholar 

  • Pohl, K. M., Wells, W. M., Guimond, A., Kasai, K., Shenton, M. E., Kikinis, R., Grimson, W. E. L., & Warfield, S. K. (2002). Incorporating non-rigid registration into expectation-maximization algorithm to segment mr images. In T. Dohi & R. Kikinis (Eds.), Lecture notes in computer science : Vol. 2488. MICCAI (pp. 564–571). Berlin: Springer.

    Google Scholar 

  • Pohl, K. M., Fisher, J., Grimson, W. E. L., Kikinis, R., & Wells, W. M. (2006). A Bayesian model for joint segmentation and registration. NeuroImage, 31(1), 228–239.

    Article  Google Scholar 

  • Pratt, W. K. (1974). Correlation techniques for image registration. IEEE Transactions on Aerospace and Electronic Systems, 10(3), 353–358.

    Article  Google Scholar 

  • Qiu, A., Younes, L., Wang, L., Ratnanather, J. T., Gillepsie, S. K., Kaplan, G., Csernansky, J., & Miller, M. I. (2007). Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulate gyrus in schizophrenia. NeuroImage, 37(3), 821–833.

    Article  Google Scholar 

  • Roche, A., Malandain, G., & Ayache, N. (2000). Unifying maximum likelihood approaches in medical image registration. International Journal of Imaging Systems and Technology, 11(1), 71–80.

    Article  Google Scholar 

  • Rohr, K. (2001). Landmark-based image analysis using geometric and intensity models. Dordrecht: Kluwer Academic.

    MATH  Google Scholar 

  • Rohr, K., Stiehl, H., Sprengel, R., Buzug, T., Weese, J., & Kuhn, M. (2001). Landmark-based elastic registration using approximating thin-plate splines. IEEE Transactions on Medical Imaging, 20(6), 526–534.

    Article  Google Scholar 

  • Schmid, C., Mohr, R., & Bauckhage, C. (2000). Evaluation of interest point detectors. International Journal of Computer Vision, 37(2), 151–172.

    Article  MATH  Google Scholar 

  • Studholme, C., Hill, D. L. G., & Hawkes, D. J. (1995). Multiresolution voxel similarity measures for MR–PET registration. In C. B. Y. Bizais & R. D. Paola (Eds.), Information processing in medical imaging (pp. 287–298). Dordrecht: Kluwer Academic.

    Google Scholar 

  • Szeliski, R. (2006). Image alignment and stitching: A tutorial. Fundamental Trends in Computer Graphics and Vision, 2(1), 1–104.

    Article  Google Scholar 

  • Talairach, J., Tournoux, P. (1988) Co-planar stereotaxic atlas of the human brain. Stuttgart: Thieme Medical.

    Google Scholar 

  • Thirion, J. P. (1996). New feature points based on geometric invariants for 3D image registration. International Journal of Computer Vision, 18:2, 121–137.

    Article  Google Scholar 

  • Twining, C., Marsland, S., & Taylor, C. (2002). Measuring geodesic distances on the space of bounded diffeomorphisms.

  • Viola, P. (1995). Alignment by maximization of mutual information. Ph.D. thesis, Massachusetts Institute of Technology.

  • Wahba, G. (1990). Spline models for observational data. Philadelphia: Society for Industrial and Applied Mathematics.

    MATH  Google Scholar 

  • Wang, F., Vemuri, B. C., & Eisenschenk, S. J. (2006). Joint registration and segmentation of neuroanatomic structures from brain mri. Academic Radiology, 13(9), 1104–1111.

    Article  Google Scholar 

  • Wells, W., Kikinis, R., Grimson, W., & Jolesz, F. (1996). Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging, 15, 429–442.

    Article  Google Scholar 

  • Wörz, S., & Rohr, K. (2006). Localization of anatomical point landmarks in 3D medical images by fitting 3d parametric intensity models. Medical Image Analysis, 10(1), 41–58.

    Article  Google Scholar 

  • Zitová, B., & Flusser, J. (2003). Image registration methods: a survey. Image and Vision Computing, 21, 977–1000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camille Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal, C., Jedynak, B. Learning to Match: Deriving Optimal Template-Matching Algorithms from Probabilistic Image Models. Int J Comput Vis 88, 189–213 (2010). https://doi.org/10.1007/s11263-009-0258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0258-5

Keywords

Navigation