Analysis of energy efficiency of small cell base station in 4G/5G networks | Telecommunication Systems Skip to main content

Advertisement

Log in

Analysis of energy efficiency of small cell base station in 4G/5G networks

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Base Stations (BSs) sleeping strategy is an efficient way to obtain the energy efficiency of cellular networks. To meet the increasing demand of high-data-rate for wireless applications, small cell BSs provide a promising and feasible approach but that consumes more power. Hence, energy efficiency in small cell BSs is a major issue to be concerned. To get the energy efficiency, in this research work, we have addressed the total power consumption and delay of User Requests (URs) in the small cell as well as 5G small cell BSs with sleeping strategy and N limited scheme. One of the effective ways to reduce the power consumption is introduce BSs sleeping strategy. Here, the small cell BSs are modeled as a M/G/1 queueing system with two different types of sleep modes namely, short sleep mode and long sleep mode. Short sleep mode is consists of maximum M number of short sleep. Here, the steady state probabilities of the small cell BSs in active, short sleep and long sleep modes are derived using supplementary variable technique. The expressions for expected power consumption and expected delay are also obtained. Finally, to get the energy consumption from the small cell BSs, the optimization of expected power consumption and expected delay is presented. The numerical results displays the impact of various parameters on power consumption and delay in small cell BSs. Also, the comparative analysis for the proposed model with the existing model has been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Blondia, C. (2021). A queueing model for a wireless sensor node using energy harvesting. Telecommunication Systems, 77(2), 335–349. https://doi.org/10.1007/s11235-021-00758-1

    Article  Google Scholar 

  2. Castañeda, L. B., Arunachalam, V., & Dharmaraja, S. (2012). Introduction to probability and stochastic processes with applications. Wiley.

  3. Choudhury, G. (2002). Some aspects of M/G/1 queue with two different vacation times under multiple vacation policy. Stochastic Analysis and Applications., 20(5), 901–909. https://doi.org/10.1081/SAP-120014547

    Article  Google Scholar 

  4. Farooq, H., & Imran, A. (2016). Spatiotemporal mobility prediction in proactive self-organizing cellular networks. IEEE Communications Letters, 21(2), 370–373. https://doi.org/10.1109/LCOMM.2016.2623276

    Article  Google Scholar 

  5. Ge, X., Yang, J., Gharavi, H., & Sun, Y. (2017). Energy efficiency challenges of 5G small cell networks. IEEE Communications Magazine, 55(5), 184–191. https://doi.org/10.1109/MCOM.2017.1600788

    Article  Google Scholar 

  6. Guo, X., Niu, Z., Zhou, S., & Kumar, P. R. (2016). Delay-constrained energy-optimal base station sleeping control. IEEE Journal on Selected Areas in Communications, 34(5), 1073–1085. https://doi.org/10.1109/JSAC.2016.2520221

    Article  Google Scholar 

  7. Hawasli, M., & Çolak, S. A. (2017). Toward green 5G heterogeneous small-cell networks: power optimization using load balancing technique. AEU-International Journal of Electronics and Communications, 82, 474–485. https://doi.org/10.1016/j.aeue.2017.09.012

    Article  Google Scholar 

  8. Huang, X., Tang, S., Zheng, Q., Zhang, D., & Chen, Q. (2018). Dynamic femtocell gNB on/off strategies and seamless dual connectivity in 5G heterogeneous cellular networks. IEEE Access, 6, 21359–21368. https://doi.org/10.1109/ACCESS.2018.2796126

    Article  Google Scholar 

  9. Lee, H. W., Lee, S. S., Park, J. O., & Chae, K. C. (1994). Analysis of the \(M^x/G/1\) queue by \(N\)-policy and multiple vacations. Journal of Applied Probability, 31(2), 476–496. https://doi.org/10.2307/3215040

    Article  Google Scholar 

  10. Liu, C., Natarajan, B., & Xia, H. (2015). Small cell base station sleep strategies for energy efficiency. IEEE Transactions on Vehicular Technology, 65(3), 1652–1661. https://doi.org/10.1109/TVT.2015.2413382

    Article  Google Scholar 

  11. Niu, Z., Guo, X., Zhou, S., & Kumar, P. R. (2015). Characterizing energy-delay tradeoff in hyper-cellular networks with base station sleeping control. IEEE Journal on Selected Areas in Communications, 33(4), 641–650. https://doi.org/10.1109/JSAC.2015.2393494

    Article  Google Scholar 

  12. Parvez, I., Rahmati, A., Guvenc, I., Sarwat, A. I., & Dai, H. (2018). A survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Communications Surveys & Tutorials, 20(4), 3098–3130. https://doi.org/10.1109/COMST.2018.2841349

    Article  Google Scholar 

  13. Pei, L., Huilin, J., Zhiwen, P., & Xiaohu, Y. (2017). Energy-delay tradeoff in ultra-dense networks considering BS sleeping and cell association. IEEE Transactions on Vehicular Technology, 67(1), 734–751. https://doi.org/10.1109/TVT.2017.2740439

    Article  Google Scholar 

  14. Schulz, P., Matthe, M., Klessig, H., Simsek, M., Fettweis, G., Ansari, J., Ashraf, S. A., Almeroth, B., Voigt, J., Riedel, I., Puschmann, A., & Windisch, M. (2017). Latency critical IoT applications in 5G: Perspective on the design of radio interface and network architecture. IEEE Communications Magazine, 55(2), 70–78. https://doi.org/10.1109/MCOM.2017.1600435CM

    Article  Google Scholar 

  15. Shariatmadari, H., Duan, R., Iraji, S., Li, Z., Uusitalo, M. A., & Jäntti, R. (2017). Resource allocations for ultra-reliable low-latency communications. International Journal of Wireless Information Networks, 24(3), 317–327. https://doi.org/10.1007/s10776-017-0360-5

    Article  Google Scholar 

  16. Shortle, J. F., Thompson, J. M., Gross, D., & Harris, C. M. (2018). Fundamentals of queueing theory (Vol. 399). Wiley.

  17. Takagi, H. (1991). Queueing analysis: A foundation of performance evaluation. Vacation and Priority Systems, 1(1).

  18. Valenzuela-Valdés, J. F., Palomares, A., González-Macías, J. C., Valenzuela-Valdés, A., Padilla, P., & Luna-Valero, F. (2018). On the ultra-dense small cell deployment for 5G networks. In 2018 IEEE 5G World Forum (5GWF) (pp. 369–372). https://doi.org/10.1109/5GWF.2018.8516948.

  19. Venkateswararao, K., & Swain, P. (2022). Binary-PSO-based energy-efficient small cell deployment in 5G ultra-dense network. The Journal of Supercomputing, 78(1), 1071–1092. https://doi.org/10.1007/s11227-021-03910-5

    Article  Google Scholar 

  20. Wang, Y., Dai, X., Wang, J. M., & Bensaou, B. (2019). A reinforcement learning approach to energy efficiency and QoS in 5G wireless networks. IEEE Journal on Selected Areas in Communications, 37(6), 1413–1423. https://doi.org/10.1109/JSAC.2019.2904365.

  21. Woon, L. J., Ramasamy, G., & Thiagarajah, S. P. (2021). Peak power shaving in hybrid power supplied 5G base station. Bulletin of Electrical Engineering and Informatics, 10(1), 62–69. https://doi.org/10.11591/eei.v10i1.2705.

  22. Wu, J., Wong, E. W., Chan, Y. C., & Zukerman, M. (2020). Power consumption and GoS tradeoff in cellular mobile networks with base station sleeping and related performance studies. IEEE Transactions on Green Communications and Networking, 4(4), 1024–1036. https://doi.org/10.1109/TGCN.2020.3000277

    Article  Google Scholar 

  23. Wu, J., Zhou, S., & Niu, Z. (2013). Traffic-aware base station sleeping control and power matching for energy-delay tradeoffs in green cellular networks. IEEE Transactions on Wireless Communications, 12(8), 4196–4209. https://doi.org/10.1109/TWC.2013.071613.122092

    Article  Google Scholar 

  24. Yang, J., Wang, W., & Zhang, X. (2017). Hysteretic base station sleeping control for energy saving in 5g cellular network. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring) (pp. 1–5). https://doi.org/10.1109/VTCSpring.2017.8108599.

  25. Yang, J., Zhang, X., & Wang, W. (2016). Two-stage base station sleeping scheme for green cellular networks. Journal of Communications and Networks, 18(4), 600–609. https://doi.org/10.1109/JCN.2016.000083

    Article  Google Scholar 

  26. Zhang, H., Liu, H., Cheng, J., & Leung, V. C. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications, 66(4), 1705–1716. https://doi.org/10.1109/TCOMM.2017.2763623

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (Deepa V) acknowledges the Summer Faculty Research Fellow (SFRF-2021) Programme of CEP, IIT Delhi, which enabled to pursue research in IIT Delhi. One of the authors (Dharmaraja Selvamuthu) thanks Bharti Airtel Limited, India, for financial support in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Deepa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Proof of Theorem 1

Since the system does not change over time in steady state, the assumptions \(P_{1,n}(x)=\lim _{t\rightarrow \infty } P_{1,n}(x,t),\quad Q^1_{j,n}(x)=\lim _{t\rightarrow \infty }Q^1_{j,n}(x,t), Q^2_{n}(x)= \lim _{t\rightarrow \infty }Q^2_{n}(x,t), \) are taken to obtain the steady state probabilities. Using these assumptions in Eqs. (1) to (11), the steady state equations are obtained as follows:

$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}P_{1,0}(x)= & {} -\lambda P_{1,0}(x)+P_{1,1}(0)s(x) \end{aligned}$$
(A.1)
$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}P_{1,n}(x)= & {} -\lambda P_{1,n}(x)+P_{1,{n+1}}(0)s(x)+\lambda P_{1,{n-1}}(x), \nonumber \\&\quad 1\le n\le N-2 \end{aligned}$$
(A.2)
$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}P_{1,n}(x)= & {} -\lambda P_{1,n}(x)+P_{1,{n+1}}(0)s(x)\nonumber \\&+\lambda P_{1,{n-1}}(x) +\sum _{j=1}^{M}Q^{1}_{j,n+1}(0)s(x)\nonumber \\&+\lambda s(x)\int _{0}^\infty Q^{2}_{n}(y)dy , n= N-1 \end{aligned}$$
(A.3)
$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}P_{1,n}(x)= & {} -\lambda P_{1,n}(x)+P_{1,{n+1}}(0)s(x)+\lambda P_{1,{n-1}}(x)\nonumber \\&+\sum _{j=1}^{M}Q^{1}_{j,n+1}(0)s(x),\qquad n \ge N. \end{aligned}$$
(A.4)
$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}Q^{1}_{1,0}(x)= & {} -\lambda Q^{1}_{1,0}(x)+P_{1,0}(0)v_{1}(x) \end{aligned}$$
(A.5)
$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}Q^{1}_{1,n}(x)= & {} -\lambda Q^{1}_{1,n}(x)+\lambda Q^{1}_{1,n-1}(x), \qquad n \ge 1 \end{aligned}$$
(A.6)
$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}Q^{1}_{j,0}(x)= & {} -\lambda Q^{1}_{j,0}(x)+Q^{1}_{j-1,0}(0)v_{1}(x), 2 \le j \le M \nonumber \\ \end{aligned}$$
(A.7)
$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}Q^{1}_{j,n}(x)= & {} -\lambda Q^{1}_{j,n}(x)+Q^{1}_{j-1,n}(0)v_{1}(x)+\lambda Q^{1}_{j,n-1}(x),\nonumber \\&\quad 2 \le j \le M ; 1 \le n \le N-1 \end{aligned}$$
(A.8)
$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}Q^{1}_{j,n}(x)= & {} -\lambda Q^{1}_{j,n}(x)+\lambda Q^{1}_{j,n-1}(x),\nonumber \\&\quad 2 \le j \le M ; n \ge N \end{aligned}$$
(A.9)
$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}Q^{2}_{0}(x)= & {} -\lambda Q^{2}_{0}(x)+Q^{1}_{M,0}(0)v_{2}(x) \end{aligned}$$
(A.10)
$$\begin{aligned} -\displaystyle \frac{{d}}{{d}x}Q^{2}_{n}(x)= & {} -\lambda Q^{2}_{n}(x)+Q^{1}_{M,n}(0)v_{2}(x)+\lambda Q^{2}_{n-1}(x),\nonumber \\&\quad 1 \le n \le N-1 \end{aligned}$$
(A.11)

The Laplace-Stieltjes transform of \(P_{1,n}(x)\), \(Q^{1}_{j,n}(x)\) and \(Q^{2}_{n}(x)\) are defined as

$$\begin{aligned}&\widetilde{P}_{1,n}(\theta )= \int _{0}^{\infty }e^{-\theta x} P_{1,n}(x)dx ; \\&\widetilde{Q}^{1}_{j,n}(\theta )= \int _{0}^{\infty }e^{-\theta x}Q^{1}_{j,n}(x)dx \end{aligned}$$
$$\begin{aligned} \widetilde{Q}^{2}_{n}(\theta )= & {} \int _{0}^{\infty }e^{-\theta x}Q^{2}_{n}(x)dx. \end{aligned}$$

Taking Laplace-Stieltjes transform on both sides of the Eqs. (A.1) to (A.11),

$$\begin{aligned}&\theta \widetilde{P}_{1,0}(\theta )-{P}_{1,0}(0)=\lambda \widetilde{P}_{1,0}(\theta )-P_{1,1}(0)\widetilde{S}(\theta ). \end{aligned}$$
(A.12)
$$\begin{aligned}&\theta \widetilde{P}_{1,n}(\theta )-{P}_{1,n}(0)=\lambda \widetilde{P}_{1,n}(\theta )-P_{1,n+1}(0)\widetilde{S}(\theta )\nonumber \\&\qquad -\lambda \widetilde{P}_{1,n-1}(\theta ), 1 \le n \le N-2. \end{aligned}$$
(A.13)
$$\begin{aligned}&\theta \widetilde{P}_{1,n}(\theta )-{P}_{1,n}(0)=\lambda \widetilde{P}_{1,n}(\theta )-P_{1,n+1}(0)\widetilde{S}(\theta )-\lambda \widetilde{P}_{1,n-1}(\theta )\nonumber \\&\quad -\sum _{j=1}^{M}Q^{1}_{j,n+1}(0)\widetilde{S}(\theta ) -\lambda \widetilde{S}(\theta ) \int _{0}^{\infty }Q^{2}_{n}(y)dy. \end{aligned}$$
(A.14)
$$\begin{aligned} \theta \widetilde{P}_{1,n}(\theta )-{P}_{1,n}(0)= & {} \lambda \widetilde{P}_{1,n}(\theta )-P_{1,n+1}(0)\widetilde{S}(\theta )-\lambda \widetilde{P}_{1,n-1}(\theta )\nonumber \\&-\sum _{j=1}^{M}Q^{1}_{j,n+1}(0)\widetilde{S}(\theta ) , \qquad n \ge N. \end{aligned}$$
(A.15)
$$\begin{aligned}&\theta \widetilde{Q}^{1}_{1,0}(\theta )-Q^{1}_{1,0}(0) =\lambda \widetilde{Q}^{1}_{1,0}(\theta )-P_{1,0}(0)\widetilde{V}_{1}(\theta ). \end{aligned}$$
(A.16)
$$\begin{aligned}&\theta \widetilde{Q}^{1}_{1,n}(\theta )-Q^{1}_{1,n}(0) =\lambda \widetilde{Q}^{1}_{1,n}(\theta )-\lambda \widetilde{Q}^{1}_{1,n-1}(\theta ) , n \ge 1. \end{aligned}$$
(A.17)
$$\begin{aligned}&\theta \widetilde{Q}^{1}_{j,0}(\theta )-Q^{1}_{j,0}(0) =\lambda \widetilde{Q}^{1}_{j,0}(\theta )-Q^{1}_{j-1,0}(0)\widetilde{V}_{1}(\theta ),\nonumber \\&\quad 2 \le j \le M. \end{aligned}$$
(A.18)
$$\begin{aligned}&\theta \widetilde{Q}^{1}_{j,n}(\theta )-Q^{1}_{j,n}(0) =\lambda \widetilde{Q}^{1}_{j,n}(\theta )-Q^{1}_{j-1,n}(0)\widetilde{V}_{1}(\theta )\nonumber \\&\quad -\lambda \widetilde{Q}^{1}_{j,n-1}(\theta ), 2 \le j \le M ; 1 \le n \le N-1. \end{aligned}$$
(A.19)
$$\begin{aligned}&\theta \widetilde{Q}^{1}_{j,n}(\theta )-Q^{1}_{j,n}(0) =\lambda \widetilde{Q}^{1}_{j,n}(\theta )\nonumber \\&-\lambda \widetilde{Q}^{1}_{j,n-1}(\theta ), 2 \le j \le M ; n \ge N. \end{aligned}$$
(A.20)
$$\begin{aligned}&\theta \widetilde{Q}^{2}_{0}(\theta )-Q^{2}_{0}(0)=\lambda \widetilde{Q}^{2}_{0}(\theta )- Q^{1}_{M,0}(0)\widetilde{V}_{2}(\theta ). \end{aligned}$$
(A.21)
$$\begin{aligned} \theta \widetilde{Q}^{2}_{n}(\theta )-Q^{2}_{n}(0)= & {} \lambda \widetilde{Q}^{2}_{n}(\theta )- Q^{1}_{M,n}(0)\widetilde{V}_{2}(\theta )- \lambda \widetilde{Q}^{2}_{n-1}(\theta ),\nonumber \\&\quad 1 \le n \le N-1. \end{aligned}$$
(A.22)

To find the steady state probability generating function (PGF) of the number of URs in the queue at an arbitrary time epoch, the following PGFs are defined as:

$$\begin{aligned} \widetilde{P}_1(z,\theta )&=\sum _{n=0}^{\infty }\widetilde{P}_{1,n}(\theta )z^n;\qquad P_1(z,0)&=\sum _{n=0}^{\infty }P_{1,n}(0)z^n \nonumber \\ \widetilde{Q}^{1}_{j}(z,\theta )&=\sum _{n=0}^{\infty } \widetilde{Q}^{1}_{j,n}(\theta ) z^n;\qquad Q^{1}_{j}(z,0)&=\sum _{n=0}^{\infty } Q^{1}_{j,n}(0)z^n \nonumber \\ \widetilde{Q}^{2}_{n}(z,\theta )&=\sum _{n=0}^{N-1}\widetilde{Q}^{2}_{n}(\theta )z^n;\qquad Q^{2}_{n}(z,0)&=\sum _{n=0}^{N-1} Q^{2}_{n}(0)z^n. \nonumber \\ \end{aligned}$$
(A.23)

Multiplying Eq. (A.16) by \(z^0\), (A.17) by \(z^n,(n=1,2,\ldots )\) and taking summation from 0 to \(\infty \) and using Eq. (A.23)

$$\begin{aligned}&\theta \sum _{n=0}^{\infty }\widetilde{Q}^{1}_{1,n}(\theta )z^n-\sum _{n=0}^{\infty }Q^{1}_{1,n}(0)z^n \nonumber \\&\quad =\lambda \sum _{n=0}^{\infty }\widetilde{Q}^{1}_{1,n}(\theta )z^n-\lambda \sum _{n=1}^{\infty }\widetilde{Q}^{1}_{1,{n-1}}(\theta )z^n \nonumber \\&\qquad - P_{1,0}(0)\widetilde{V}_{1}(\theta )\nonumber \\&{[}\theta -\lambda +\lambda z]\widetilde{Q}^{1}_{1}(z,\theta )=Q^{1}_1(z,0)-P_{1,0}(0)\widetilde{V}_{1}(\theta ).\nonumber \\ \end{aligned}$$
(A.24)

Multiplying Eq. (A.18) by \(z^0\), (A.19) by \(z^n, (n=1,2,\ldots , N-1)\), (A.20) by \(z^n (n=N,N+1,\ldots )\) taking summation from 0 to \(\infty \) and using Eq. (A.23)

$$\begin{aligned}&\theta \sum _{n=0}^{\infty } \widetilde{Q}^{1}_{j,n}(\theta )z^n-\sum _{n=0}^{\infty }Q^{1}_{j,n}(0)z^n \nonumber \\&\quad = \lambda \sum _{n=0}^{\infty }\widetilde{Q}^{1}_{j,n}(\theta )z^n-\lambda \sum _{n=1}^{\infty }\widetilde{Q}^{1}_{j,n-1}(\theta )z^n\nonumber \\&\qquad +\widetilde{V}_{1}(\theta )\sum _{n=0}^{N-1}\widetilde{Q}^{1}_{j-1,n}(0)z^n.\nonumber \\&\quad {[}\theta -\lambda +\lambda z]\widetilde{Q}^{1}_{j}(z,\theta )=Q^{1}_{j}(z,0)-\widetilde{V}_{1}(\theta )\nonumber \\&\quad \sum _{n=0}^{N-1}\widetilde{Q}^{1}_{j-1,n}(0)z^n, 2 \le j \le M. \end{aligned}$$
(A.25)

Multiplying Eq. (A.21) by \(z^0\), (A.22) by \(z^n (n=1,2,\ldots , N-1)\) and taking summation from 0 to \(N-1\) and using Eq. (A.23)

$$\begin{aligned}&\theta \sum _{n=0}^{N-1}\widetilde{Q}^{2}_{n}(\theta )z^n-\sum _{n=0}^{N-1}Q^{2}_{n}(0)z^n\nonumber \\&\quad =\lambda \sum _{n=0}^{N-1}\widetilde{Q}^{2}_n(\theta )z^n-\lambda \sum _{n=1}^{N-1}\widetilde{Q}^{2}_{n-1}(\theta )z^n\nonumber \\&\quad -\widetilde{V}_{2}(\theta )\sum _{n=0}^{N-1}\widetilde{Q}^{1}_{M,n}(0)z^n.\nonumber \\&\quad {[}\theta -\lambda +\lambda z]\widetilde{Q}^{2}(z,\theta )= Q^{2}(z,0)\nonumber \\&\quad -\widetilde{V}_{2}(\theta )\sum _{n=0}^{N-1}Q^{1}_{M,n}(0)z^n+\lambda z^N \widetilde{Q}^{2}_{N-1}(\theta ). \end{aligned}$$
(A.26)

Multiplying Eq. (A.12) by \(z^0\), (A.13) by \(z^n (n=1,2,\ldots , N-2)\), (A.14) by \(z^{N-1}\), (A.15) by \(z^n,(n=N,N+1,\ldots )\) and taking summation from 0 to \(\infty \) and using Eq. (A.23)

$$\begin{aligned}&\theta \sum _{n=0}^{\infty }\widetilde{P}_{1,n}(\theta )z^n-\sum _{n=0}^{\infty }P_{1,n}(0)z^n \nonumber \\&\quad = \lambda \sum _{n=0}^{\infty }\widetilde{P}_{1,n}(\theta )z^n-\lambda \sum _{n=1}^{\infty }\widetilde{P}_{1,{n-1}}(\theta )z^n\nonumber \\&\quad -\widetilde{S}(\theta ) (\sum _{n=0}^{\infty }P_{1,{n+1}}(0)z^n \nonumber \\&\quad +\sum _{n=N-1}^{\infty } \sum _{j=1}^{M}Q^{1}_{j,n+1}(0)z^n\nonumber \\&\quad +\lambda z^{N-1}\int _{0}^\infty Q^{2}_{N-1}(y)dy).\nonumber \\&z[\theta -\lambda +\lambda z]\widetilde{P}_{1}(z,\theta ) \nonumber \\&\quad = [z-\widetilde{S}(\theta )] P_{1}(z,0) -\widetilde{S}(\theta )\Big ({-P_{1,{0}}(0)}+ \sum _{j=1}^{M} Q^{1}_{j}(z,0)\nonumber \\&\quad -\sum _{j=1}^{M}\sum _{n=0}^{N-1}Q^{1}_{j,n}(0)z^n+\lambda z^N \widetilde{Q}^{2}_{N-1}(0)\Big ). \end{aligned}$$
(A.27)

Substituting \(\theta =\lambda -\lambda z\) in Eqs. (A.24),(A.25),(A.26), and (A.27), we obtain the following

$$\begin{aligned} Q^{1}_{1}(z,0)= & {} P_{1,0}(0)\widetilde{V}_{1}(\lambda -\lambda z). \end{aligned}$$
(A.28)
$$\begin{aligned} Q^{1}_{j}(z,0)= & {} \widetilde{V}_{1}(\lambda -\lambda z)\sum _{n=0}^{N-1} Q^{1}_{j-1,n}(0)z^n, \nonumber \\&2\le j\le M. \end{aligned}$$
(A.29)
$$\begin{aligned} Q^{2}(z,0)= & {} \widetilde{V}_{2}(\lambda -\lambda z)\sum _{n=0}^{N-1}Q^{1}_{M,n}(0) z^n\nonumber \\&-\lambda z^N \widetilde{Q}^{2}_{N-1}(\lambda -\lambda z). \end{aligned}$$
(A.30)
$$\begin{aligned} P_{1}(z,0)= & {} \frac{\widetilde{S}(\lambda -\lambda z)}{[z-\widetilde{S}(\lambda -\lambda z)]}\Big (-P_{1,0}(0) +\sum _{j=1}^{M}(Q^{1}_{j}(z,0)\nonumber \\&\quad -\sum _{n=0}^{N-1}Q^{1}_{j,n}(0)z^n)+\lambda z^N \widetilde{Q}^{2}(0)\Big ). \end{aligned}$$
(A.31)

Substituting Eq. (A.28) in (A.24), we have

$$\begin{aligned} \widetilde{Q}^{1}_{1}(z,\theta ) = \frac{(\widetilde{V}_{1}(\lambda -\lambda z)-\widetilde{V}_{1}(\theta ))}{[\theta -\lambda +\lambda z] }P_{1,0}(0). \end{aligned}$$
(A.32)

Substituting Eq. (A.29) in (A.25), we obtain the following

$$\begin{aligned} \widetilde{Q}^{1}_{j}(z,\theta )= & {} \frac{(\widetilde{V}_{1}(\lambda -\lambda z)-\widetilde{V}_{1}(\theta ))}{[\theta -\lambda +\lambda z]}\sum _{j=2}^{M} \sum _{n=0}^{N-1}\widetilde{Q}^{1}_{j-1,n}(0)z^n,\nonumber \\&2 \le j\le M. \end{aligned}$$
(A.33)

Substituting Eq. (A.30) in (A.26), we get

$$\begin{aligned} \widetilde{Q}^{2}(z,\theta )= & {} \frac{(\widetilde{V}_{2}(\lambda -\lambda z)-\widetilde{V}_{2}(\theta ))}{[\theta -\lambda +\lambda z]}\sum _{n=0}^{N-1}Q^{1}_{M,n}(0)z^n\nonumber \\&+\frac{\lambda z^N (\widetilde{Q}^{2}_{N-1}(\lambda - \lambda z)-Q^{2}_{N-1}(\theta )}{[\theta -\lambda +\lambda z]}. \end{aligned}$$
(A.34)

Substituting Eq. (A.31) in (A.27), we obtain

$$\begin{aligned} \widetilde{P}_{1}(z,\theta )= & {} \frac{[\widetilde{S}(\lambda -\lambda z)-\widetilde{S}(\theta )]}{[\theta -\lambda +\lambda z][z-\widetilde{S}(\lambda -\lambda z)]}\nonumber \\&\Big [\Big (-P_{1,0}(0)+\sum _{j=1}^{M}(Q^{1}_{j}(z,0)\nonumber \\&-\sum _{n=0}^{N-1}Q^{1}_{j,n}(0)z^n)+\lambda z^N \widetilde{Q}^{2}(0)\Big )\Big ]. \end{aligned}$$
(A.35)

\(\square \)

1.1 The probability generating Function of number of user requests in the queue P(z) at an arbitrary time epoch

$$\begin{aligned} P(z)= & {} \widetilde{P}_1(z,0)+\sum _{j=1}^{\infty } \widetilde{Q}^{1}_{j}(z,0)+ \widetilde{Q}^{2}(z,0). \end{aligned}$$

Substituting Eqs. (A.32), (A.33), (A.34) and (A.35) in the above equation, we get

$$\begin{aligned} P(z)= & {} \frac{[\widetilde{V}_{1}(\lambda -\lambda z)]}{\lambda [z-\widetilde{S}(\lambda -\lambda z)]}P_{1,0}(0)+\frac{[\widetilde{V}_{1}(\lambda -\lambda z)]}{\lambda [z-\widetilde{S}(\lambda -\lambda z)]}\nonumber \\&\sum _{n=0}^{N-1}q^1_n z^n+\frac{1-z+\widetilde{V}_{2}(\lambda - \lambda z)(z-\widetilde{S}(\lambda - \lambda z)}{(z-1)\lambda (z-\widetilde{S}(\lambda - \lambda z)}\nonumber \\&\sum _{n=0}^{N-1}Q^{1}_{M,n}(0)z^n \nonumber \\&+\frac{z^2 \lambda -z\lambda -1+(1+\lambda - z \lambda )\widetilde{S}(\lambda -\lambda z)}{\lambda (z-1)(z-\widetilde{S}(\lambda - \lambda z))}\nonumber \\&z^N \widetilde{Q}^{2}_{N-1}(0)-\lambda z^N \widetilde{Q}^{2}_{N-1}(\lambda - \lambda z). \end{aligned}$$
(A.36)

where \(q^{1}_n=\sum _{j=1}^{M-1}Q^1_{j,n}(0)\). The probability generating function P(z) has to satisfy \(P(1) = 1\). In order to satisfy the condition, applying L’Hospital’s rule and evaluating \(\lim _{z\rightarrow 1} P(z)\) and equating the expression to 1, \(( 1-\lambda E(S)) > 0 \) is obtained. Let \(\rho = \lambda E[S]\). Thus \(\rho <1\) is the stability condition for the proposed model.

Appendix B

Proof of Theorem 2

Since \(\beta _i\) is the probability of i URs arrive during the short sleep period.

$$\begin{aligned} \beta _i=\int _{0}^{\infty } \frac{e^{-\lambda t}{(\lambda t)}^i}{i!} \,dV(t). \end{aligned}$$

Multiplying both sides of the above equation by \(z^i\) and taking the summation from \(i=0\) to \(\infty \), we obtain the following

$$\begin{aligned} \sum _{i=0}^\infty \beta _i z^i= & {} \sum _{i=0}^\infty \int _{0}^{\infty } \frac{e^{-\lambda t}{(\lambda t)}^i}{i!}z^i \,dV(t).\\= & {} \int _{0}^{\infty } \sum _{i=0}^\infty \frac{e^{-\lambda t}{(\lambda t)}^i}{i!}z^i \,dV(t).\\= & {} \int _{0}^{\infty } \sum _{i=0}^\infty e^{-\lambda t}e^{\lambda tz}\,dV(t).\\= & {} \widetilde{V}(\lambda -\lambda z).\\ \end{aligned}$$

\(\square \)

Appendix C

Proof of Theorem 3

From Eqs. (A.28), (A.29) and using (A.23), we get

$$\begin{aligned}&\sum _{j=1}^{M}Q^{1}_{j}(z,0)= \widetilde{V}_1 (\lambda - \lambda z )\left[ P_{1,0}(0)+ \sum _{j=2}^{M}\sum _{n=0}^{N-1}Q^{1}_{j-1,n}(0)z^n\right] .\\&\sum _{j=1}^{M}\sum _{n=0}^{\infty }Q^{1}_{j,n}(0)z^n = \widetilde{V}_1 (\lambda - \lambda z )\left[ P_{1,0}(0)+ \sum _{j=1}^{M-1}\sum _{n=0}^{N-1}Q^{1}_{j,n}(0)z^n\right] .\\&\sum _{n=0}^{\infty }(q^{1}_{n}+Q^{1}_{M,n}(0))z^n = \widetilde{V}_1 (\lambda - \lambda z )\left[ P_{1,0}(0)+\sum _{n=0}^{N-1} q^{1}_n z^n\right] . \end{aligned}$$

Using Theorem 1, we get

$$\begin{aligned}&\sum _{n=0}^{\infty }(q^1_n+Q^1_{M,n}(0))z^n\\&\quad = \left( \sum _{m=0}^{\infty }\beta _m z^m\right) \left( P_{1,0}(0)+ \sum _{n=0}^{N-1}(q^{1}_{n}z^n\right) \end{aligned}$$

where \(\beta _i\) is the probability that ‘i’ URs arrive during the short sleep period. \(\square \)

Equating the coefficients of \(z^n , n= 0,1,\ldots N-1\) on both sides of equation, we have

$$\begin{aligned} q^1_n+Q^1_{M,n}(0)= & {} \beta _n P_{1,0}(0)+ \sum _{i=0}^{n}\beta _i q^{1}_{n-i}.\nonumber \\ q^1_n+Q^1_{M,n}(0)= & {} \beta _n P_{1,0}(0)+\beta _0 q^1_n+\sum _{i=1}^{n}\beta _i q^{1}_{n-i}.\nonumber \\ (1-\beta _0)q^1_n= & {} \beta _n P_{1,0}(0)+\sum _{i=1}^{n}\beta _i q^{1}_{n-i}-Q^1_{M,n}(0).\nonumber \\ q^1_n= & {} \frac{[\beta _n P_{1,0}(0)+\sum _{i=1}^n\beta _iq^1_{n-i}-Q^1_{M,n}(0)]}{1-\beta _0},\nonumber \\&n=,1,2,\ldots , N-1. \end{aligned}$$
(C.1)

and

$$\begin{aligned} q^1_0= & {} \frac{1}{1-\beta _0}[\beta _0 P_{1,0}(0)-Q^1_{M,0}(0). \end{aligned}$$
(C.2)

By substituting \(b_0=\frac{\beta _0}{1-\beta _{0}}\) and \(c_{0}= \frac{Q^1_{M,0}(0)}{1-\beta _{0}}\), the above equation reduces to \( q^{1}_{0} = b_{0}P_{1,0}-c_{0}\).

In Eq. (C.1), when \(n=1\) we get

$$\begin{aligned} q_1^{1}= & {} \frac{\beta _{1}P_{1,0}+\beta _{1}q^{1}_{0}-Q^{1}_{M,1}(0)}{1-\beta _{0}} \end{aligned}$$

Substituting Eq. (C.2) in the above equation, we get

$$\begin{aligned}&q^1_1= b_{1}P_{1,0}-c_{1}\quad \text {where}\quad b_{1}\\&\quad =\frac{\beta _{1}+\beta _{1}b_{0}}{1-\beta _0} \text {and} \quad c_1=\frac{\beta _1 c_0 +Q^{1}_{M,1}(0)}{1-\beta _0} \end{aligned}$$

In Eq. (C.1), when \( n=2\), we get

$$\begin{aligned} q^{1}_{2}= & {} \frac{\beta _{2}P_{1,0}+\beta _{1}q^{1}_{1}+\beta _{2}q^{1}_{0}-Q^{1}_{M,2}(0)}{1-\beta _{0}}\\= & {} b_{2}P_{1,0}-c_{2} \end{aligned}$$
$$\begin{aligned}&\text {where}\quad b_{2} = \frac{\beta _{2}+\beta _{1}b_{1}+\beta _{2}b_{0}}{1-\beta _{0}} \qquad \text {and}\quad \\&c_{2} = \frac{\beta _{1}c_{1}+\beta _{2}c_{0}+Q^{1}_{M,2}(0)}{1-\beta _{0}} . \end{aligned}$$
$$\begin{aligned} \text {In general}, \quad Q^{1}_{n}= & {} b_{n}P_{1,0}-c_{n} \end{aligned}$$
$$\begin{aligned}&\text {where}\quad b_{n}=\frac{\beta _{n}+\sum _{i=1}^{n}\beta _{i}b_{n-i}}{1-\beta _{0}} \quad \text {and}\quad \\&c_{n}=\frac{Q^{1}_{M,n}(0)+\sum _{i=1}^{n}\beta _{i}c_{n-i}}{1-\beta _{0}} . \end{aligned}$$

From Eq. (A.28), we have

$$\begin{aligned} Q^1_1(z,0)= & {} P_{1,0}(0)\widetilde{V}_1(\lambda -\lambda z).\\ \sum _{n=0}^\infty Q^1_{1,n}(0)z^n= & {} \Big (\sum _{n=0}^\infty \beta _n z^n \Big )P_{1,0}(0). \end{aligned}$$

Coefficient of \(z^n\) in the above equation is \(Q^1_{1,n}\) =\(\beta _n P_{1,0}(0)\).

From Eq. (A.29), we have

$$\begin{aligned} Q^1_2 (z,0)= & {} \widetilde{V}_1(\lambda -\lambda z)\sum _{n=0}^{N-1} Q^1_{1,n}(0)z^n.\\ \sum _{n=0}^\infty Q^1_{2,n}(0)z^n= & {} \Big (\sum _{m=0}^\infty \beta _m z^m\Big )\Big (\sum _{n=0}^{N-1}Q^1_{1,n}(0)z^n \Big ) \\ \sum _{n=0}^\infty Q^1_{2,n}(0)z^n= & {} \Big (\sum _{m=0}^\infty \beta _m z^m\Big )\Big (\sum _{n=0}^{N-1}(\beta _n P_{1,0}(0)z^n) \Big ) \\ \sum _{n=0}^\infty Q^1_{2,n}(0)z^n= & {} P_{1,0}(0)\Big (\beta _0\beta _0+(\beta _0\beta _1+\beta _1 \beta _0)z\\&+(\beta _0\beta _2+\beta _1\beta _1+\beta _2\beta _0)z^2\\&+(\beta _0\beta _3+\beta _1\beta _2+\beta _2\beta _1+\beta _3 \beta _0)z^3+ \ldots . \end{aligned}$$

Coefficient of \(z^n\) in the above equation is

$$\begin{aligned} Q^1_{2,n}(0) =P_{1,0}(0)\sum _{k_{1}=0}^j \beta _{k_{1}}\beta _{j-k_{1}}. \end{aligned}$$

From Eq. (A.29), we have

$$\begin{aligned} Q^1_3 (z,0)= & {} \widetilde{V}_1(\lambda -\lambda z)\sum _{n=0}^{N-1} Q^1_{2,n}(0)z^n\\ \sum _{n=0}^\infty Q^1_{3,n}(0)z^n= & {} \Big (\sum _{m=0}^\infty \beta _m z^m\Big )\Big (\sum _{n=0}^{N-1}Q^1_{2,n}(0)z^n\Big ) \\ \sum _{n=0}^\infty Q^1_{3,n}(0)z^n= & {} P_{1,0}(0)\Big (\beta _0\beta _0\beta _0 +(\beta _0(\beta _0\beta _1+\beta _1 \beta _0)\\&+\beta _1\beta _0\beta _0)z+(\beta _0(\beta _0\beta _2 +\beta _1\beta _1+\beta _2\beta _0)\\&+\beta _1(\beta _0\beta _1+\beta _1\beta _0)+\beta _2\beta _0\beta _0)z^2 + \ldots . \end{aligned}$$

Coefficient of \(z^n\) in the above equation is

$$\begin{aligned} Q^1_{3,n}(0)= & {} P_{1,0}(0)\Big (\sum _{k_{2}=0}^j \beta _{j-{k_{2}}}\Big )\Big (\sum _{k_{1}=0}^{k_2} \beta _{k_{1}}\beta _{k_{2}}-{k_{1}}\Big ). \end{aligned}$$

By generalizing this, we get the coefficient of \(z^n\) in \(Q_{M} (z,0)\) is

$$\begin{aligned} Q_{M,j}(0)= & {} P_{1,0}(0)\sum _{k_{M-1}=0}^{j}\beta _{j-{k_{M-1}}}\sum _{k_{{M-2}=0}}^{k_{M-1}}\beta _{k_{M-1}-k_{M-2}}\\&\quad \ldots \sum _{k_{{1}=0}}^{k_{2}}\beta _{k_{2}-k_{2}}\beta _{k_{1}},\\&\quad 0 \le j \le N-1. \end{aligned}$$

Appendix D

Proof of Theorem 4

From Eq. (A.21), we have

$$\begin{aligned} (\theta -\lambda )\widetilde{Q}^2_0(\theta )= & {} Q^2_0(0)-Q^1_{M,0}(0)\widetilde{V}_2(\theta ). \end{aligned}$$
(D.1)

Substituting \(\theta = \lambda \) in (D.1), we get

$$\begin{aligned} Q^2_0(0)= & {} Q^1_{M,0}(0)\widetilde{V}_2(\lambda ). \end{aligned}$$

Therefore,

$$\begin{aligned} \widetilde{Q}^2_0(\theta )= & {} \frac{\widetilde{V}_2(\lambda )-\widetilde{V}_2(\theta )}{\theta - \lambda }Q^1_{M,0}(0)\\= & {} k_0 Q^1_{M,0}(0) \quad \text {where} \qquad k_0 = \frac{\widetilde{V}_{2}(\lambda )-\widetilde{V}_{2}(\theta )}{\theta - \lambda }. \end{aligned}$$

Substituting \(n = 1\) in Eq. (A.22), we get

$$\begin{aligned} (\theta -\lambda )\widetilde{Q}^2_1(\theta )= & {} Q^2_1(0)-Q^1_{M,1}(0)\widetilde{V}_2(\theta )-\lambda \widetilde{Q}^2_0(\theta ). \end{aligned}$$
(D.2)

when \(\theta =\lambda \), the above equation reduces to

$$\begin{aligned} Q^2_1(0)= & {} Q^1_{M,1}(0)\widetilde{V}_2(\theta )+\lambda \widetilde{Q}^2_0(\theta ). \end{aligned}$$

Substituting the above in Eq. (D.2), we get

$$\begin{aligned} \widetilde{Q}^2_1(\theta )= & {} \frac{1}{\theta - \lambda }\Big [(\widetilde{V}_2(\lambda ) - \widetilde{V}_2(\theta ))Q^1_{M,1}(0)\\&+\lambda \widetilde{(}Q^2_0(\lambda ) - \widetilde{Q}^2_0(\theta )\Big ]\\= & {} k_0 Q^1_{M,1}(0)+\lambda (\frac{\widetilde{Q}^2_0(\lambda ) - \widetilde{Q}^2_0(\theta )}{\theta -\lambda })\\= & {} k_0 Q^1_{M,1}(0)-\lambda (\frac{\widetilde{V}^1_2(\lambda ) +k_0)}{\theta - \lambda })Q^1_{M,0}(0)\\= & {} k_0 Q^1_{M,1}(0)-\lambda k_1 Q^1_{M,0}(0)\quad \text {where}\\&\quad k_1=\Big (\frac{\widetilde{V}^1_2(\lambda ) +k_0}{\theta - \lambda }\Big ). \end{aligned}$$

Substituting \(n = 2\) in Eq. (A.22), we get

$$\begin{aligned} (\theta -\lambda ) \widetilde{Q}^{2}_{2}(\theta )= & {} Q^{2}_{2}(0)- Q^{1}_{M,2}(0)\widetilde{V}_{2}(\theta )-\lambda \widetilde{Q}^{2}_{1}(\theta ). \end{aligned}$$
(D.3)

When \(\theta = \lambda \), the above equation reduced to

$$\begin{aligned} Q^2_{2}(0)= & {} Q^{1}_{M,2}(0)\widetilde{V}_{2}(\lambda )+\lambda \widetilde{Q}^{2}_{1}(\lambda ). \end{aligned}$$

Substituting the above in Eq. (D.3), we get

$$\begin{aligned} \widetilde{Q}^{2}_{2}(\theta )= & {} k_{0} Q^{1}_{M,2}(0)-\lambda Q^{1}_{M,1}(0)\Big (\frac{\widetilde{V}^{1}_{2}(\lambda )+k_{0}}{\theta - \lambda }\Big )\\&+\lambda ^2 Q^{1}_{M,0}(0)\Big (\frac{\widetilde{V}^{2}_{2}(\lambda )+k_{1}}{\theta - \lambda }\Big ) \\= & {} k_{0}Q^{1}_{M,2}(0)+\lambda k_{1} Q^{1}_{M,1}(0)+\lambda ^2 k_{2}Q^{1}_{M,0}(0) \end{aligned}$$

where \(k_{2} = \frac{\widetilde{V}^{2}_{2}({\lambda })+k_{1}}{(\theta - \lambda )}\).

Substituting \(n = 3\) in Eq. (A.22), we get

$$\begin{aligned} (\theta -\lambda ) \widetilde{Q}^{2}_{3}(\theta )= & {} Q^{2}_{3}(0)- Q^{1}_{M,3}(0)\widetilde{V}_{2}(\theta )-\lambda \widetilde{Q}^{2}_{1}(\theta ). \end{aligned}$$
(D.4)

When \(\theta = \lambda \), the above equation reduced to

$$\begin{aligned} Q^{2}_{3}(0)= & {} Q^{1}_{M,3}(0)\widetilde{V}_{2}(\lambda )+\lambda \widetilde{Q}^{2}_{1}(\lambda ). \end{aligned}$$

Substituting the above in Eq. (D.4), we get

$$\begin{aligned} \widetilde{Q}^{2}_{3}(\theta )= & {} \Big (\frac{\widetilde{V}_{2}(\lambda )-\widetilde{V}_{2}(\theta )}{\theta -\lambda }\Big )Q^{1}_{M,3}(0)+\lambda \Big (\frac{\widetilde{Q}^{1}_{2}(\lambda )-\widetilde{Q}^{1}_{2}(\theta )}{\theta -\lambda }\Big )\\= & {} k_{0}Q^{1}_{M,3}(0)-\frac{\lambda }{\theta -\lambda }(\widetilde{V}^{1}_{2}(\lambda )+k_{0})Q^{1}_{M,2}(0) \\&-\lambda (\widetilde{V}^{2}_{2}(\lambda )+k_{1})Q^{1}_{M,1}(0) + \lambda ^2 (V^{3}_{2}(\lambda )+k_{2})Q^{1}_{M,0}(0)\\= & {} k_{0}Q^{1}_{M,3}(0)-\lambda k_{1} Q^{1}_{M,2}(0)+ \lambda ^2 k_{2}Q^{1}_{M,1}(0)\\&-\lambda ^3 k_{3}Q^{1}_{M,0}(0) \end{aligned}$$

where \(k_{3} = \frac{V^{3}_{2}(\lambda )+k_{2}}{\theta -\lambda }\).

Generalizing this, we have

$$\begin{aligned} \widetilde{Q}^{2}_{i}(\theta )= \sum _{j=0}^{i}(-\lambda )^{j}k_{j}Q^{1}_{M,i-j}(0),\quad 0\le i\le N-1 \end{aligned}$$

where \(k_{j}=\frac{\widetilde{V}_{2}^{j}(\lambda )+k_{j-1}}{\theta -\lambda }\quad \text {and} \qquad k_{0}=\frac{\widetilde{V}_{2}(\lambda )-\widetilde{V}_{2}(\theta )}{\theta -\lambda }\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, V., Haridass, M., Selvamuthu, D. et al. Analysis of energy efficiency of small cell base station in 4G/5G networks. Telecommun Syst 82, 381–401 (2023). https://doi.org/10.1007/s11235-022-00987-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00987-y

Keywords

Mathematics Subject Classification

Navigation