Abstract
Applications for mobile ad-hoc networks are heavily dependent on information about the nodes positions. Since the network may include malicious nodes providing bogus data (e.g., fake positions), the reliability of this information is critical. Although this problem has been addressed by some predictive models, challenges still exist regarding (a) the accuracy/security of such models, (b) the potential advantages of combining different prediction models, (c) the power consumption resulting from the simultaneous application of multiple models, and (d) the lack of strategic approaches in the analysis of information aiming to find the most advantageous data and balance divergent results. To address these issues, we analyze in this paper the performance of two prediction methods: linear regression and Grey model. We have evaluated their corresponding energy costs for reliably identifying each node position. The results, obtained via simulations, are added to independent vectors and statistical indicators are gathered to create a game theory payoff matrix. The proposed model allows the evaluation of the predictive methods either individually or collectively, facilitating the identification of the best parameters for a target energy saving profile.













Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Basilico, N., Gatti, N., Monga, M., & Sicari, S. (2014). Security games for node localization through verifiable multilateration. IEEE Transactions on Dependable and Secure Computing, 11(1), 72–85. doi:10.1109/TDSC.2013.30.
Bhuiyan, M. Z. A., Wang, G., & Vasilakos, A. V. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982. doi:10.1109/TC.2014.2346209.
Bierman, H. S., & Fernandez, L. (1998). Game theory with economic application. Reading, MA: Addison-Wesley.
Borgne, Y. A. L., Santini, S., & Bontempi, G. (2007). Adaptive model selection for time series prediction in wireless sensor networks. Signal Processing, 87(12), 3010–3020. doi:10.1016/j.sigpro.2007.05.015.
Bosman, H. H., Iacca, G., Tejada, A., Wrtche, H. J., & Liotta, A. (2017). Spatial anomaly detection in sensor networks using neighborhood information. Information Fusion, 33, 41–56. doi:10.1016/j.inffus.2016.04.007.
Capkun, S., & Hubaux, J. P. (2006). Secure positioning in wireless networks. IEEE Journal on Selected Areas in Communications, 24(2), 221–232. doi:10.1109/JSAC.2005.861380.
Deng, J. L. (1989). Introduction to Grey system theory. The Journal of Grey System, 1(1), 1–24.
Deshpande, N., Grant, E., & Henderson, T. C. (2014). Target localization and autonomous navigation using wireless sensor networks—A pseudo-gradient algorithm approach. IEEE Systems Journal, 8(1), 93–103. doi:10.1109/JSYST.2013.2260631.
Doherty, L., Pister, K. S., & Ghaoui, L. E. (2001). Convex position estimation in wireless sensor networks. In Proceedings of IEEE INFOCOM’01 (Vol. 3, pp. 1655–1663).
Draper, N. R., Smith, H., & Pownell, E. (1966). Applied regression analysis (Vol. 3). New York: Wiley.
Dricot, J. M., der Haegen, M. V., Borgne, Y. A. L., & Bontemp, G. (2008). A framework for user localization and tracking using machine learning techniques in wireless sensors networks. In Proceedings of IEEE sensors conference’08 (pp. 1088–1091).
Fiani, R. (2006). Teoria dos jogos: com aplicações em economia, administração e ciências sociais, rev e atual. Rio de Janeiro: Campus Elsevier.
Furtado, V. H., Gimene, R., Camargo Júnior, J., & Almeida Júnior, J. (2008). Aspectos de segurança na integração de veículos aéreos não tripulados (vant) no espaço aéreo brasileiro. In VII SITRAER, Rio de Janeiro, 2008.
Guo, Y., Schildt, S., & Wolf, L. (2013). Detecting blackhole and Greyhole attacks in vehicular delay tolerant networks. In Proceedings of IEEE COMSNETS’13 (pp. 1–7).
Guo, Z., Guo, Y., Hong, F., Jin, Z., He, Y., Feng, Y., et al. (2010). Perpendicular intersection: Locating wireless sensors with mobile beacon. IEEE Transactions on Vehicular Technology, 59(7), 3501–3509.
Gupta, S. K., Kuila, P., & Jana, P. K. (2016). Genetic algorithm for k-connected relay node placement in wireless sensor networks. Proceedings of the International Conference on Computer and Communication Technologies, 1, 721–729. doi:10.1007/978-81-322-2517-1.
He, J., Xu, J., Zhu, X., Zhang, Y., Zhang, T., & Fu, W. (2014). Reputation-based secure sensor localization in wireless sensor networks. The Scientific World Journal, 2014(2014), 1–10. doi:10.1155/2014/308341.
Huang, L., Jia, J., Yu, B., Chun, B. G., Maniatis, P., Naik, M. (2010). Predicting execution time of computer programs using sparse polynomial regression. In Advances in neural information processing systems (pp. 883–891).
Kaaniche, H., & Kamoun, F. (2010). Mobility prediction in wireless ad hoc networks using neural networks. Journal of Telecommunications, 2(1), 95–101.
Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications, 37(2), 1784–1789.
Khan, S. U., & Ahmad, I. (2009). A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. IEEE Transactions on Parallel and Distributed Systems, 20(3), 346–360.
Kherani, A., & Rao, A. (2010). Performance of node-eviction schemes in vehicular networks. IEEE Transactions on Vehicular Technology, 59(2), 550–558.
Kraus, S., Lin, R., & Shavitt, Y. (2008). On self-interested agents in vehicular networks with car-to-car gossiping. IEEE Transactions on Vehicular Technology, 57(6), 3319–3332.
Kuiper, E., & Nadjm-Tehrani, S. (2011). Geographical routing with location service in intermittently connected MANETs. IEEE Transactions on Vehicular Technology, 60(2), 592–604.
L’ecuyer, P. (1999). Good parameters and implementations for combined multiple recursive random number generators. Operations Research, 47(1), 159–164.
Liu, D., Ning, P., Liu, A., Wang, C., & Du, W. K. (2008). Attack-resistant location estimation in wireless sensor networks. ACM Transactions on Information and System Security, 11(4), 22.
Liu, J., Jiang, X., Nishiyama, H., & Kato, N. (2011). Reliability assessment for wireless mesh networks under probabilistic region failure model. IEEE Transactions on Vehicular Technology, 60(5), 2253–2264.
Luo, X., & Chang, X. (2015). A novel data fusion scheme using Grey model and extreme learning machine in wireless sensor networks. International Journal of Control, Automation and Systems, 13(3), 539–546. doi:10.1007/s12555-014-0309-8.
Miao, C., Dai, G., Ying, K., & Chen, Q. (2015). Collaborative localization and location verification in WSNs. Sensors, 15(5), 10631–10649. doi:10.3390/s150510631.
Morettin, P. A., & Toloi, C. (2006). Análise de séries temporais.
Morettin, P. A., & Toloi, C. d. C. (1987). Previsão de séries temporais. São Paulo: Atual.
Muppirisetty, L. S., Svensson, T., & Wymeersch, H. (2016). Spatial wireless channel prediction under location uncertainty. IEEE Transactions on Wireless Communications, 15(2), 1031–1044. doi:10.1109/TWC.2015.2481879.
Nadkar, T., Thumar, V., Tej, G. P., Merchant, S. N., & Desai, U. B. (2012). Distributed power allocation for secondary users in a cognitive radio scenario. IEEE Transactions on Wireless Communications, 11(4), 1576–1586.
Nakayama, H., Kurosawa, S., Jamalipour, A., Nemoto, Y., & Kato, N. (2009). A dynamic anomaly detection scheme for AODV-based mobile ad hoc networks. IEEE Transactions on Vehicular Technology, 58(5), 2471–2481.
Nirmala, M. B., & Manjunatha, A. S. (2015). Enhanced voting based secure localization for wireless sensor networks. International Journal of Computer Network and Information Security, 7(12), 52–59. doi:10.5815/ijcnis.2015.12.06.
Padmanabhan, K. S. (2013). Energy efficient localization technique in wireless sensor network. International Journal of Emerging Technology and Advanced Engineering, 3(11), 148–152.
Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad-hoc on-demand distance vector (AODV) routing. Technical report.
Pescaru, D., & Curiac, D. I. (2014). Anchor node localization for wireless sensor networks using video and compass information fusion. Sensors, 14(3), 4211–4224. doi:10.3390/s140304211.
Poornima, P., & Rajesh, R. (2016). Mobility control based dual data transmission for load balancing in WSN. Middle-East Journal of Scientific Research, 24, 193–200. doi:10.5829/idosi.mejsr.2016.24.TAET23427.
Raymond, D. R., Marchany, R. C., Brownfield, M., & Midkiff, S. F. (2009). Effects of denial-of-sleep attacks on wireless sensor network MAC protocols. IEEE Transactions on Vehicular Technology, 58(1), 367–380.
Shakhakarmi, N., & Vaman, D. R. (2012). Distributed position localization and tracking (DPLT) of malicious nodes in cluster based mobile ad hoc networks (MANETs). arXiv preprint. arXiv:1203.3601.
Silva, A., Pontes, E., Zhou, F., & Kofuji, S. T. (2014). Grey model and polynomial regression for identifying malicious nodes in MANETs. In Proceedings of IEEE GLOBECOM’14 (pp. 162–168).
Yun Su, Y. L. (2010). Prediction of multivariate chaotic time series with local polynomial fitting. Computers and Mathematics with Applications, 59(2), 737–744.
Tan, X., & Lie, T. (2001). Allocation of transmission loss cost using cooperative game theory in the context of open transmission access. In Proceeding of IEEE Power Engineering Society winter meeting’01 (Vol. 3, pp. 1215–1219).
Tseng, F. M., Yu, H. C., & Tzeng, G. H. (2001). Applied hybrid Grey model to forecast seasonal time series. Technological Forecasting and Social Change, 67(2), 291–302.
Wang, H., Sheng, B., & Li, Q. (2006). Elliptic curve cryptography-based access control in sensor networks. International Journal of Security and Networks, 1(3–4), 127–137.
Wasef, A., & Shen, X. (2009). EDR: Efficient decentralized revocation protocol for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 58(9), 5214–5224.
Yang, Z., & Liu, Y. (2012). Understanding node localizability of wireless ad hoc and sensor networks. IEEE Transactions on Mobile Computing, 11(8), 1249–1260.
Yann-Ael, L., & Gianluca, B. (2005). Round robin cycle for predictions in wireless sensor networks. In Proceedings of international conference on intelligent sensors, sensor networks and information processing (pp. 253–258). doi:10.1109/SSNIP.2005.1595588.
Yao, Y., Han, Q., Xu, X., & Jiang, N. (2015). A RSSI-based distributed weighted search localization algorithm for WSNs. International Journal of Distributed Sensor Networks, 2015, 1–11. doi:10.1155/2015/293403.
Ye, F., Luo, H., Lu, S., & Zhang, L. (2005). Statistical en-route filtering of injected false data in sensor networks. IEEE Journal on Selected Areas in Communications, 23(4), 839–850.
Yu, A., & Lv, S. (2016). Research into positioning of the least square support vector machine based on Fisher fishing in WSN. International Journal of Future Generation Communication and Networking, 9(6), 145–150. doi:10.14257/ijfgcn.2016.9.6.14.
Zhu, S., Setia, S., Jajodia, S., & Ning, P. (2004). An interleaved hop-by-hop authentication scheme for filtering of injected false data in sensor networks. In Proceeding of IEEE symposium on security and privacy’04 (pp. 259–271).
Author information
Authors and Affiliations
Corresponding author
Additional information
Part of this work has been presented at IEEE GLOBECOM 2014 and published in its proceedings [42].
Rights and permissions
About this article
Cite this article
Silva, A., Zhou, F., Pontes, E. et al. Energy-efficient node position identification through payoff matrix and variability analysis. Telecommun Syst 65, 459–477 (2017). https://doi.org/10.1007/s11235-016-0245-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11235-016-0245-4