Are there general causal forces in ecology? | Synthese
Skip to main content

Are there general causal forces in ecology?

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

In this paper, I adopt the view that if general forces or processes can be detected in ecology, then the principles or models that represent them should provide predictions that are approximately correct and, when not, should lead to the sorts of intervening factors that usually make trouble. I argue that Lotka–Volterra principles do not meet this standard; in both their simple “strategic” and their complex “tactical” forms they are not approximately correct of the findings of the laboratory experiments and historical studies most likely to confirm them; nor do they instruct ecologists where to look for likely intervening factors. Evidence drawn from long-term case studies and other available data sets suggests that the populations of predators and their prey are not regulated by an interaction between them but are controlled by transient, contingent, and accidental events that affect each animal and each population individualistically. This paper argues that the presence of general forces or processes in ecology should be determined by comparing competing models of these forces not just to each other or to a null model but also to case studies that may challenge theoretical approaches with convincing individualistic causal accounts of the phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P. A., & Matsuda, H. (1997). Prey adaptation as a cause of predator-prey cycles. Evolution, 51(6), 1742–1750.

    Article  Google Scholar 

  • Andrewartha, H. G., & Birch, L. C. (1954). The distribution and abundance of animals. University of Chicago Press, Chicago, Illinois, USA. Annual Report 2013–14. School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan USA 49931-1295. 23 April. Online at http://www.isleroyalewolf.org/wolfhome/ann_rep.html.

  • Arditi, R., & Ginzburg, L. R. (2012). How species interact: altering the standard view on trophic ecology. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Bangs, E. E., & Fritts, S. H. (1996). Reintroducing the gray wolf to central Idaho and Yellowstone National Park. Wildlife Society Bulletin, 24, 402–413.

    Google Scholar 

  • Barrett, C. B. (2010). Measuring food insecurity. Science, 327(5967), 825–828.

    Article  Google Scholar 

  • Botkin, D. B. (1990). Discordant harmonies: a new ecology for the twenty-first century. Oxford: Oxford University Press.

    Google Scholar 

  • Boyce, M. S. (2000). Modeling predator-prey dynamics. Research techniques in animal ecology. New York: Columbia University Press.

    Google Scholar 

  • Britton, N. (2012). Essential mathematical biology. Springer Science & Business Media.

  • Bromley, D. (2012). We’ll be nice to nature when it’s goof for us. Breakthrough Journal, spring. Published online at: http://thebreakthrough.org/index.php/site/search_results/d72e7362dbe08b579e09b31dcb4b2948/.

  • Brush, M. (2014). National Public Radio report, available online at http://michiganradio.org/post/ice-bridge-isle-royale-complete-will-new-wolves-cross-it.

  • Bryant, J. P. (1981). Phytochemical deterrence of snowshoe hare browsing by adventitious shoots of four Alaskan trees. Science, 213(4510), 889–890.

    Article  Google Scholar 

  • Cartwright, N. (2007). Causal Powers: What are They? Why do we need them? What can and cannot be done with them? Contingency and Dissent in Science Project.

  • Coleridge, S. T. (1818). Essay VI. The friend (Vol. 3). London: Rest Fenner.

    Google Scholar 

  • Colyvan, M., & Ginzburg, L. R. (2003). Laws of nature and laws of ecology. Oikos, 101, 649–653.

    Article  Google Scholar 

  • Colyvan, M., & Ginzburg, L. R. (2014). Ecological laws. Oxford Bibliographies Online. Available at:http://www.oxfordbibliographies.com/view/document/obo-9780199830060/obo-9780199830060-0046.xml.

  • Colyvan, M., & Ginzburg, L. R. (2010). Analogical thinking in ecology: looking beyond disciplinary boundaries. The Quarterly Review of Biology, 85(2), 171–182.

    Article  Google Scholar 

  • Cortez, M. H., & Weitz, J. S. (2014). Coevolution can reverse predator-prey cycles. Proceedings of the National Academy of Sciences, 111(20), 7486–7491.

    Article  Google Scholar 

  • Deng, B. (2013). An inverse problem: Trappers drove hare to eat lynx. In: preparation for publication. Available online at http://www.osti.gov/eprints/topicpages/documents/record/156/1639377.html.

  • Economist Magazine. (2014). December 8. Available online at: http://www.economist.com/blogs/economist-explains/2014/12/economist-explains-4.

  • Ehrlich, P. R. (1970). Looking Backward from 2000 A.D. The Progressive, 34(4), 1.

    Google Scholar 

  • Ehrlich, P. R., & Ehrlich, A. H. (1990). The Population Explosion. New York: Simon and Schuster.

    Google Scholar 

  • Evans, M. R., Mike, B., Stephen, J. C., Sasha, R. X. D., Sandra, D., Stephen, E., et al. (2013). Predictive systems ecology. Proceedings of the Royal Society B: Biological Sciences, 280, 1771.

    Google Scholar 

  • Finerty, J. P. (1980). The population ecology of cycles in small mammals: mathematical theory and biological fact. New Haven: Yale University Press.

    Google Scholar 

  • Flanders, S. E. (1948). A host-parasite community to demonstrate balance. Ecology, 29, 123.

    Article  Google Scholar 

  • Fodor, Jerry A. (1974). Special sciences (or: the disunity of science as a working hypothesis). Synthese, 28(2), 97–115.

    Article  Google Scholar 

  • Fuller, T. K. (1989). Population dynamics of wolves in north-central Minnesota. Wildlife Monographs, 105, 3–41.

    Google Scholar 

  • Futuyma, D. J. (1998). Wherefore and whither the naturalist? American Naturalist, 151, 1–6.

    Article  Google Scholar 

  • Garrott, R. A., Gude, J. A., Bergman, E. J., Gower, C., White, P. J., & Hamlin, K. L. (2005). Generalizing wolf effects across the greater yellowstone area: a cautionary note. Wildlife Society Bulletin, 33(4), 1245–1255.

    Article  Google Scholar 

  • Gause, G. F. (1934). The Struggle for Existence. Baltimore: Williams and Wilkins.

    Book  Google Scholar 

  • Gause, G. F., Smaragdova, N. P., & Witt, A. A. (1936). Further Studies of interaction between predator and prey. Journal of Animal Ecology, 5, 1–18.

    Article  Google Scholar 

  • Gilpin, M. E. (1973). Do hares eat lynx? American Naturalist, 105, 727–730.

    Article  Google Scholar 

  • Ginzburg, L. R., & Colyvan, M. (2004). Ecological orbits : How planets move and populations grow. Cary: Oxford University Press.

    Google Scholar 

  • Greene, H. W. (1986). Natural history and evolutionary biology. In M. E. Feder & G. V. Lander (Eds.), Predator–prey relationships: perspectives and approaches from the study of lower vertebrates (pp. 99–108). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Hall, C. A. (1988). An assessment of several of the historically most influential theoretical models used in ecology and of the data provided in their support. Ecological Modelling, 43(1), 5–31.

    Article  Google Scholar 

  • Hanski, I. (1991). The functional response of predators: worries about scale. Trends in Ecology & Evolution, 6(5), 141–142.

    Article  Google Scholar 

  • Hardin, G. (1968). The tragedy of the commons. Science, 162(3859), 1243–1248.

  • Hausman, D. M. (1992). The inexact and separate science of economics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Hebblewhite, M. (2013). Consequences of ratio-dependent predation by wolves for elk population dynamics. Population Ecology, 55(4), 511–522.

    Article  Google Scholar 

  • Holling, C. S. (1966). The strategy of building models of complex ecological systems. In K. E. F. Watt (Ed.), Systems analysis in ecology (pp. 195–214). New York: Academic Press.

    Chapter  Google Scholar 

  • Huffaker, C. B. (1958). Experimental Studies on Predation: Dispersion Factors and PredatorPrey Oscillations. Hilgardia, 27, 795–835.

    Article  Google Scholar 

  • Isle Royale Research Project Websites: http://isleroyalewolf.org/overview/overview/at_a_glance.html, http://www.isleroyalewolf.org/data/data/home.html, http://isleroyalewolf.org/overview/overview/at_a_glance.html#main-content.

  • Jensen, C. J. (2007). Predation and its consequences: Insights into the modeling of interference. ProQuest.

  • Jost, C., Devulder, G., Vucetich, J. A., Peterson, R. O., & Arditi, R. (2005). The wolves of Isle Royale display scale-invariant satiation and ratio-dependent predation on moose. Journal of Animal Ecology, 74(5), 809–816.

    Article  Google Scholar 

  • Jost, C., Arino, O., & Arditi, R. (1999). About deterministic extinction in ratiodependent predator-prey models. Bulletin of Mathematical Biology, 61(1), 19–32.

    Article  Google Scholar 

  • Keith, L. B., Cary, J. R., Yuill, T. M., & Keith, I. M. (1985). Prevalence of helminths in a cyclic snowshoe hare population. Journal of Wildlife Diseases, 21(3), 233–253.

    Article  Google Scholar 

  • Kincaid, H. (1997). Individualism and the unity of science: Essays on reduction, explanation, and the special sciences. New York: Rowman & Littlefield.

    Google Scholar 

  • Lange, M. (2005). Ecological laws: what would they be and why would they matter? Oikos, 110(2), 394–403.

    Article  Google Scholar 

  • Lawler, S. (2001). Ecology in a bottle. In W. Resetarits & J. Bernardo (Eds.), Experimental ecology: issues and perspectives. Oxford: Oxford University Press.

    Google Scholar 

  • Lawton, J. H. (1999). Are there any general laws in ecology? Oikos, 84, 177–192.

    Article  Google Scholar 

  • Leigh, E. R. (1968). The ecological role of Volterra’s equations. In M. Gerstenhaber (Ed.), Some mathematical problems in biology (pp. 1–61). Providence: American Mathematical Society.

    Google Scholar 

  • Levandowsky, M. (1976). The cats in Zanzibar. Quarterly Review of Biology, 51, 417–419.

    Article  Google Scholar 

  • Levin, S. A. (1980). Mathematics, ecology, and ornithology. The Auk, 97(2), 422–425.

    Google Scholar 

  • Levin, S. A. (1981). The role of theoretical ecology in the description and understanding of populations in heterogeneous environments. American Zoologist, 21(4), 865–875.

    Article  Google Scholar 

  • Levins, R. (1966). The strategy of model building in population biology. American Scientist, 54, 421–431.

    Google Scholar 

  • Loreau, M., & Mazancourt, C. (2013). Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecology letters, 16(s1), 106–115.

    Article  Google Scholar 

  • Luckinbill, L. S. (1973). Coexistence in laboratory populations of Paramecium aurelia and its predator Didinium nasutum. Ecology, 54, 1320–1327.

    Article  Google Scholar 

  • Malthus, T. R. (1966). First essay on population, 1798 (Vol. 14). London: Macmillan.

    Book  Google Scholar 

  • Marcotty, J. (2014). Pellet gun felled Isabelle, the wolf that escaped Isle Royale: The 5-year-old lone wolf left Isle Royale for the mainland on an ice bridge that formed on Lake Superior this winter. Minneapolis Star Tribune, March 15. http://www.startribune.com/local/250419971.html.

  • Massarelli, N., Hoffman, K., & Previte, J. P. (2013). Effect of parity on productivity and sustainability of Lotka–Volterra food chains. Journal of Mathematical Biology, 67, 1–18.

    Article  Google Scholar 

  • Matthewson, J., & Weisberg, M. (2008). The structure of tradeoffs in model building. Synthese, 170, 169–190.

    Article  Google Scholar 

  • Mech, L. D., & Fieberg, J. (2014). Re-evaluating the northeastern Minnesota moose decline and the role of wolves. Journal of Wildlife Management, 78(7), 1143–1150.

    Article  Google Scholar 

  • Mill, J. S. (1963 [1843]). The Collected Works of John Stuart Mill, vol. 7. A System of Logic, Ratiocinative and Inductive. University of Toronto Press.

  • Mill, J. S. (1995 [1848]). On the definition and method of Political Economy, reprinted as pp. In D. Hausman (Ed.), 1995 (pp. 52–68). The Philosophy of Economics: Cambridge, Cambridge University Press.

  • Montgomery, R. A., Vucetich, J. A., Roloff, G. J., Bump, J. K., & Peterson, R. O. (2014). Where wolves Kill Moose: The influence of prey life history dynamics on the landscape ecology of predation. PloS One, 9(3), e91414.

    Article  Google Scholar 

  • Nelson, M. P., Vucetich, J. A., Peterson, R. O., & Vucetich, L. M. (2011). The Isle Royale Wolf-Moose Project (1958-present) and the wonder of long-term ecological research. Endeavour, 35(1), 31–39.

    Article  Google Scholar 

  • Nicholson, A. J. (1933). The balance of animal populations. Journal of Animal Ecology, 2, 131–178.

    Article  Google Scholar 

  • Peterson, R. O. (2013). It’s a wonderful gift. Science, 339, 142–143.

    Article  Google Scholar 

  • Pickett, S. T., Kolasa, J., & Jones, C. G. (2007). Ecological understanding: the nature of theory and the theory of nature. New York: Academic Press.

    Google Scholar 

  • Pielou, E. C. (1981). The usefulness of ecological models: a stock-taking. Quarterly Review of Biology, 56, 17–31.

    Article  Google Scholar 

  • Pyle, R. M. (2001). The rise and fall of natural history. Orion Autumn, 2001, 16–23.

    Google Scholar 

  • Ronald, P. H., & Waser, N. M. (2010). Ecological invariance and the search for generality in ecology. The Ecology of Place: Contributions of Place-Based Research to Ecological Understanding, 1, 69–90.

    Google Scholar 

  • Sagarin, R., & Pauchard, A. (2012). Observation and ecology: Broadening the scope of science to understand a complex world. Washington, DC: Island Press.

    Book  Google Scholar 

  • Salt, G. W. (1983). Roles: their limits and responsibilities in ecological and evolutionary research. American Naturalist, 122, 697–705.

    Article  Google Scholar 

  • Schaffer, W. M. (1984). Stretching and folding in lynx fur returns: Evidence for a strange attractor in nature? American Naturalist, 124, 798–820.

    Article  Google Scholar 

  • Schmidly, D. J. (2005). What it means to be a naturalist and the future of natural history at American universities. Journal of Mammalogy, 86(3), 449–456.

    Article  Google Scholar 

  • Sen, A. (1984). Resources, values and development. Cambridge, MA: Cambridge Harvard University Press.

    Google Scholar 

  • Sergio, F., Schmitz, O. J., Krebs, C. J., Holt, R. D., Heithaus, M. R., Wirsing, A. J., et al. (2014). Towards a cohesive, holistic view of top predation: a definition, synthesis and perspective. Oikos, 123(10), 1234–1243.

  • Simberloff, D. (1980). A succession of paradigms in ecology: Essentialism to materialism and probabilism. Synthese, 43, 3–39. doi:10.1007/bf00413854.

    Article  Google Scholar 

  • Simberloff, D. (2004). Community ecology: is it time to move on? The American Naturalist, 163(6), 787–799.

    Article  Google Scholar 

  • Simon, H. A. (1963). Problems methodology–discussion. The American economic review. Papers and Proceedings of the Seventy-Fifth Annual Meeting of the American Economic Association, 53(2), 229–231.

  • Sinclair, A. R. E., & Gosline, J. M. (1997). Solar activity and mammal cycles in the Northern Hemisphere. American Naturalist, 149, 776–784.

  • Smith, D. W., Peterson, R. O., & Houston, D. B. (2003). Yellowstone after wolves. BioScience, 53(4), 330–340.

    Article  Google Scholar 

  • Smith, F. E. (1952). Experimental methods in population dynamics: A critique. Ecology, 33(4), 441–450.

    Article  Google Scholar 

  • Stenseth, N. C., Falck, W., Bjørnstad, O. N., & Krebs, C. J. (1997). Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx. Proceedings of the National Academy of Sciences, 94(10), 5147–5152.

    Article  Google Scholar 

  • Strong Jr, D. R. (1982). Null hypotheses in ecology. In E. Saarinen (Ed.), Conceptual issues in ecology (pp. 245–259). Netherlands: Springer.

  • Turchin, P. (2003). Complex population dynamics: A theoretical/ empirical synthesis. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Veilleux, B. G. (1979). An analysis of the predatory interaction between Paramecium and Didinium. Journal of Animal Ecology, 48, 787–803.

    Article  Google Scholar 

  • Vucetich, J. A., Nelson, M. P., & Peterson, R. O. (2012). Should Isle Royale wolves be reintroduced? A case study on wilderness management in a changing world. In: George Wright Forum (Vol. 29, No. 1, pp. 126-147).

  • Vucetich, J. A., Peterson, R. O., & Schaefer, C. L. (2002). The effect of prey and predator densities on wolf predation. Ecology, 83(11), 3003–3013.

    Article  Google Scholar 

  • Vucetich, J. A., Peterson, R. O., & Nelson, M. P. (2013). Predator and Prey, a delicate dance. New York Times Opinion Page, May 8.

  • Vucetich, J., & Peterson, R. O. (2014). Ecological Studies of Wolves on Isle Royale.

  • Weinstein, M. S. (1977). Hares, lynx, and trappers. American Naturalist, 111, 806–808.

  • Weisberg, M., & Reisman, K. (2008). The robust Volterra Principle. Philosophy of science, 75(1), 106–131.

    Article  Google Scholar 

  • White, T. C. R. (2013). Experimental and observational evidence reveals that predators in natural environments do not regulate their prey: They are passengers, not drivers. Acta Oecologica, 53, 73–87.

    Article  Google Scholar 

  • Wilcove, D. S., & Eisner, T. S. (2000). The impending extinction of natural history. Chronicle of Higher Education; September 15, 47(3), B24.

  • Winterhalder, B. P. (1980). Canadian fur bearer cycles and Cree-Ojibwa hunting and trapping practices. American Naturalist, 111, 870–879.

  • Woodward, J. (2003). Making things happen. Oxford: Oxford University Press.

    Google Scholar 

  • Woodward, J. (2000). Explanation and invariance in the special sciences. The British Journal for the Philosophy of Science, 51(2), 197–254.

    Article  Google Scholar 

  • Zhou, C., Fujiwara, M., & Grant, W. E. (2013). Dynamics of a predator-prey interaction with seasonal reproduction and continuous predation. Ecological Modelling, 268, 25–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Sagoff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagoff, M. Are there general causal forces in ecology?. Synthese 193, 3003–3024 (2016). https://doi.org/10.1007/s11229-015-0907-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-015-0907-x

Keywords