Abstract
Colloquially, episodic memory is described as “the memory of personally experienced events”. Even though episodic memory has been studied in psychology and neuroscience for about six decades, there is still great uncertainty as to what episodic memory is. Here we ask how episodic memory should be characterized in order to be validated as a natural kind. We propose to conceive of episodic memory as a knowledge-like state that is identified with an experientially based mnemonic representation of an episode that allows for a mnemonic simulation thereof. We call our analysis the Sequence Analysis of Episodic Memory since episodes will be analyzed in terms of sequences of events. Our philosophical analysis of episodic memory is driven and supported by experimental results from psychology and neuroscience. We discuss selected experimental results that provide exemplary evidence for uniform causal mechanisms underlying the properties of episodic memory and argue that episodic memory is a natural kind. The argumentation proceeds along three cornerstones: First, psychological evidence suggests that a violation of any of the proposed conditions for episodic memory amounts to a deficiency of episodic memory and no form of memory or cognitive process but episodic memory fulfills them. Second, empirical results support a claim that the principal anatomical substrate of episodic memory is the hippocampus. Finally, we can pin down causal mechanisms onto neural activities in the hippocampus to explain the psychological states and processes constituting episodic memory.
Similar content being viewed by others
Notes
In psychology, the adjective-noun combination “false memory” is often used to refer to a false mnemonic representation. The use of this phrase by psychologists is sometimes interpreted as if memory in psychology would not be regarded as factive. However, this conclusion would be justified only if “false” were an intersective adjective, for which the inference from “x is AN” to “x is N” is valid. The more plausible interpretation, we think, is that “false” in “false memory” is a privative adjective like “false” in “false money” or “fake” in “fake gun”. For privative adjectives, the inference is not valid: false money is not money, a fake gun is not a gun and, likewise, false memory is not a case of memory. Moreover, in psychological research and, even more so, in forensic situations the question of whether a memory report of the form “I remember that...” truly is a case of memory or rather a case of confabulation or error often arises and is naturally regarded as a sensible question. This question would be pointless if memory were not generally regarded as factive.
Our definition presupposes some version of event atomism, i.e., the assumption that there are primitive events that do not further divide into other events. We, however, leave open on which ontological level those events occur (on a microphysical or rather on a neuro-cognitive level). We regard this issue as inessential to the following argumentation of the paper.
There is experimental evidence that humans segment their experience into distinct episodes. For instance, Ezzyat and Davachi (2011) reported that cued retrieval is more successful if cue and target were perceived to have occurred within the same episode as opposed to distinct episodes.
For a neurophilosophical account of events and their participating objects, see Werning (2003).
For a discussion on reliable memory traces, see (Martin and Deutscher 1966).
It is astounding that in some linguistic cases even the use of the noun “knowledge” does apparently not imply factivity. In the quite frequent phrase “his knowledge was outdated” the predicate “outdated” coerces an interpretation of “knowledge” as denoting a set of propositions that are not true given the current state of evidence.
In psychology, the terms “false episodic memory” or “false memory” are popular (Marsh et al. 2008). We use the broader term “improper episodic memory” to indicate that a mnemonic representation fails to be proper episodic memory if one or more of the conditions (S1)–(S7) is violated, even in cases where the content of the mnemonic representation is veridical. In other words, false episodic memories are improper episodic memories, but the reverse is not true.
A major methodological hurdle in studying the potential dissociation between semantic and episodic memory is that the retrieval might always involve both types of memory (e.g., McCabe et al. 2011). However, irrespective of whether an experimental paradigm can be developed to dissociate the retrieval process behaviorally, there could be a conceptual and neural difference between the two types of memory.
References
Aggleton, J. P., Shaw, C., & Gaffan, E. A. (1992). The performance of postencephalitic amnesic subjects on two behavioural tests of memory: Concurrent discrimination learning and delayed matching-to-sample. Cortex, 28, 359–372.
Agster, K. L., Fortin, N. J., & Eichenbaum, H. (2002). The hippocampus and disambiguation of overlapping sequences. Journal of Neuroscience, 22, 5760–5768.
Alloway, T. P., & Alloway, R. G. (2010). Investigating the predictive roles of working memory and IQ in academic attainment. Journal of Experimental Child Psychology, 106, 20–29. doi:10.1016/j.jecp.2009.11.003.
Alloway, T. P., Gathercole, S. E., Kirkwood, H., & Elliott, J. (2009). The cognitive and behavioral characteristics of children with low working memory. Child Development, 80, 606–621. doi:10.1111/j.1467-8624.2009.01282.x.
Aly, M., Ranganath, C., & Yonelinas, A. P. (2013). Detecting changes in scenes: The hippocampus is critical for strength-based perception. Neuron, 78, 1127–1137. doi:10.1016/j.neuron.2013.04.018.
Amarasingham, A., & Levy, W. B. (1998). Predicting the distribution of synaptic strengths and cell firing correlations in a self-organizing, sequence prediction model. Neural Computation, 10, 25–57.
Axmacher, N., Elger, C. E., & Fell, J. (2008). Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain, 131, 1806–1817. doi:10.1093/brain/awn103.
Azizi, A. H., Schieferstein, N., & Cheng, S. (2014). The transformation from grid cells to place cells is robust to noise in the grid pattern. Hippocampus, 24, 912–919. doi:10.1002/hipo.22306.
Azizi, A. H., Wiskott, L., & Cheng, S. (2013). A computational model for preplay in the hippocampus. Frontiers in Computational Neuroscience, 7, 161. doi:10.3389/fncom.2013.00161.
Babb, S. J., & Crystal, J. D. (2005). Discrimination of what, when, and where: Implications for episodic-like memory in rats. Learning and Motivation, 36, 177–189. doi:10.1016/j.lmot.2005.02.009.
Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1–29. doi:10.1146/annurev-psych-120710-100422.
Baddeley, A., & Wilson, B. A. (2002). Prose recall and amnesia: Implications for the structure of working memory. Neuropsychologia, 40, 1737–1743.
Baddeley, A. D., & Hitch, G. (1974). Working memory. Psychology of Learning and Motivation, 8, 47–89. doi:10.1016/S0079-7421(08)60452-1.
Barense, M. D., Groen, I Ia, Lee, A. C. H., et al. (2012). Intact memory for irrelevant information impairs perception in amnesia. Neuron, 75, 157–167. doi:10.1016/j.neuron.2012.05.014.
Bauer, P. J., Doydum, A. O., Pathman, T., et al. (2012). It’s all about location, location, location: Children’s memory for the “where” of personally experienced events. Journal of Experimental Child Psychology, 113, 510–522. doi:10.1016/j.jecp.2012.06.007.
Baxter, M. G. (2009). Involvement of medial temporal lobe structures in memory and perception. Neuron, 61, 667–677. doi:10.1016/j.neuron.2009.02.007.
Bechara, A., Damasio, A. R., Damasio, H., & Anderson, S. W. (1994). Insensitivity to future consequences following damage to human prefrontal cortex. Cognition, 50, 7–15. doi:10.1016/0010-0277(94)90018-3.
Bedford, F. L. (1997). False categories in cognition: The not-the-liver fallacy. Cognition, 64, 231–248.
Bermudez, J. L. (1995). Nonconceptual content: From perceptual experience to subpersonal computational states. Mind and Language, 10, 333–369. doi:10.1111/j.1468-0017.1995.tb00019.x.
Bernecker, S. (2010). Memory : A philosophical study. Oxford: Oxford University Press.
Bernecker, S. (2008). The metaphysics of memory. New York: Springer.
Berry, C. J., Shanks, D. R., & Henson, R Na. (2008). A single-system account of the relationship between priming, recognition, and fluency. Journal of Experimental Psychology Learning Memory and Cognition, 34, 97–111. doi:10.1037/0278-7393.34.1.97.
Bieri, P. (1995). Why is consciousness puzzling? In T. Metzinger (Ed.), Conscious Experience (pp. 45–60). Paderborn: Schoening, Imprint Academic.
Bischof, N. (1980). On the pyhlogeny of human morality. In G. S. Stent (Ed.), Morality as a biological phenomenon. Report of the Dahlem workshop on biology and morals (pp. 48–66). Berkeley: Universtity of California Press.
Bischof-Köhler, D. (1985). Zur phylogenese menschlicher motivation [on the phylogeny of human motivation]. In L. H. Eckensberger & M. M. Baltes (Eds.), Emotion und reflexivität (pp. 3–47). München: Urban & Schwarzenberg.
Bontempi, B., Laurent-Demir, C., Destrade, C., & Jaffard, R. (1999). Time-dependent reorganization of brain circuitry underlying long-term memory storage. Nature, 400, 671–675. doi:10.1038/23270.
Boyd, R. (1991). Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical studies, 61, 127–148. doi:10.1007/bf00385837.
Boyd, R. (1999). Kinds, complexity and multiple realization. Philosophical studies, 95, 67–98. doi:10.1023/a%253a1004511407133.
Bragin, A., Engel, J., Wilson, C., et al. (1999). High-frequency oscillations in human brain. Hippocampus, 9, 137–142.
Buckley, M. J., Booth, M. C., Rolls, E. T., & Gaffan, D. (2001). Selective perceptual impairments after perirhinal cortex ablation. Journal of Neuroscience, 21, 9824–9836.
Buhry, L., Azizi, A. H., & Cheng, S. (2011). Reactivation, replay, and preplay: How it might all fit together. Neural Plasticity, 2011, 203462. doi:10.1155/2011/203462.
Burgess, N., Maguire, Ea, & O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35, 625–641. doi:10.1016/S0896-6273(02)00830-9.
Bussey, T. J., Saksida, L. M., & Murray, E. A. (2002). Perirhinal cortex resolves feature ambiguity in complex visual discriminations. European Journal of Neuroscience, 15, 365–374.
Buzsaki, G. (1989). Two-stage model of memory trace formation: A role for “noisy” brain states. Neuroscience, 31, 551–570.
Buzsáki, G., Leung, L. W., & Vanderwolf, C. H. (1983). Cellular bases of hippocampal EEG in the behaving rat. Brain Research, 287, 139–171.
Cheng, S. (2013). The CRISP theory of hippocampal function in episodic memory. Frontiers in Neural Circuits, 7, 88. doi:10.3389/fncir.2013.00088.
Cheng, S., & Frank, L. (2011). The structure of networks that produce the transformation from grid cells to place cells. Neuroscience, 197, 293–306. doi:10.1016/j.neuroscience.2011.09.002.
Cheng, S., & Frank, L. M. (2008). New experiences enhance coordinated neural activity in the hippocampus. Neuron, 57, 303–313. doi:10.1016/j.neuron.2007.11.035.
Cheng, S., & Werning, M. (2013). Composition and replay of mnemonic sequences : The contributions of REM and slow-wave sleep to episodic memory. Behavioral and Brain Science, 36, 610–611. doi:10.1017/S0140525X13001234.
Clayton, N. S., Bussey, T. J., & Dickinson, A. (2003). Can animals recall the past and plan for the future? Nature Reviews Neuroscience, 4, 685–691. doi:10.1038/nrn1180.
Clayton, N. S., & Dickinson, A. (1998). Episodic-like memory during cache recovery by scrub jays. Nature, 395, 272–274. doi:10.1038/26216.
Cohen, J., & Meskin, A. (2004). On the epistemic value of photographs. Journal of Aesthetics and Art Criticism, 62, 197–210.
Conway, Ma. (2009). Episodic memories. Neuropsychologia, 47, 2305–2313. doi:10.1016/j.neuropsychologia.2009.02.003.
Corballis, M. C. (2013). Mental time travel: A case for evolutionary continuity. Trends in Cognitive Sciences, 17, 5–6. doi:10.1016/j.tics.2012.10.009.
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? Progress in Brain Research, 169, 323–338. doi:10.1016/S0079-6123(07)00020-9.
Cowan, N. (1995). Attention and memory. Oxford: Oxford University Press.
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466. doi:10.1016/S0022-5371(80)90312-6.
Davidson, D. (1980). The logical form of action sentences. Essays on actions and events (pp. 105–121). Oxford: Clarendon Press. [orginally published in 1967].
Dere, E., Huston, J. P., & De Souza Silva, Ma. (2005). Episodic-like memory in mice: Simultaneous assessment of object, place and temporal order memory. Brain Research, and Brain Research Protocols, 16, 10–19. doi:10.1016/j.brainresprot.2005.08.001.
Dew, I. T. Z., & Cabeza, R. (2011). The porous boundaries between explicit and implicit memory: Behavioral and neural evidence. Annals of the New York Academy of Sciences, 1224, 174–190. doi:10.1111/j.1749-6632.2010.05946.x.
Dragoi, G., & Buzsáki, G. (2006). Temporal encoding of place sequences by hippocampal cell assemblies. Neuron, 50, 145–157. doi:10.1016/j.neuron.2006.02.023.
Dragoi, G., & Tonegawa, S. (2011). Preplay of future place cell sequences by hippocampal cellular assemblies. Nature, 469, 397–401. doi:10.1038/nature09633.
Eichenbaum, H., Dudchenko, P., Wood, E., et al. (1999). The hippocampus, memory, and place cells: Is it spatial memory or a memory space? Neuron, 23, 209–226.
Erez, J., Lee, A. C. H., & Barense, M. D. (2013). It does not look odd to me: Perceptual impairments and eye movements in amnesic patients with medial temporal lobe damage. Neuropsychologia, 51, 168–180. doi:10.1016/j.neuropsychologia.2012.11.003.
Eschenko, O., Ramadan, W., Mölle, M., Born, J., & Sara, S. J. (2008). Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learning and Memory, 15(4), 222–228. doi:10.1101/lm.726008.
Euston, D. R., Tatsuno, M., & McNaughton, B. L. (2007). Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science, 318, 1147–1150. doi:10.1126/science.1148979.
Ezzyat, Y., & Davachi, L. (2011). What constitutes an episode in episodic memory? Psychological Science, 22, 243–252. doi:10.1177/0956797610393742.
Fortin, N. J., Agster, K. L., & Eichenbaum, H. B. (2002). Critical role of the hippocampus in memory for sequences of events. Nature Neuroscience, 5, 458–462. doi:10.1038/nn834.
Friedman, W. J. (1993). Memory for the time of past events. Psychological Bulletin, 113, 44–66. doi:10.1037/0033-2909.113.1.44.
Gelbard-Sagiv, H., Mukamel, R., Harel, M., et al. (2008). Internally generated reactivation of single neurons in human hippocampus during free recall. Science, 322, 96–101. doi:10.1126/science.1164685.
Girardeau, G., Benchenane, K., Wiener, S. I., et al. (2009). Selective suppression of hippocampal ripples impairs spatial memory. Nature Neuroscience, 12, 1222–1223. doi:10.1038/nn.2384.
Golby, A. J., Poldrack, R. A., Brewer, J. B., et al. (2001). Material-specific lateralization in the medial temporal lobe and prefrontal cortex during memory encoding. Brain, 124, 1841–1854. doi:10.1093/brain/124.9.1841.
Goldman, A. I. (1986). Epistemology and cognition. Cambridge, MA: Harvard University Press.
Graf, P., & Schacter, D. L. (1985). Implicit and explicit memory for new associations in normal and amnesic subjects. Journal of Experimental Psychology Learning Memory and Cognition, 11, 501–518.
Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Science, 27, 377–396. doi:10.1017/S0140525X04000093.
Gupta, A. S., van der Meer, M. A., Touretzky, D. S., & Redish, D. D. (2012). Segmentation of spatial experience by hippocampal \(\uptheta \) sequences. Nature Neuroscience, 15, 1032–1039. doi: 10.1038/nn.3138.
Gupta, A. S., van der Meer, M. A. A., Touretzky, D. S., & Redish, A. D. (2010). Hippocampal replay is not a simple function of experience. Neuron, 65, 695–705. doi:10.1016/j.neuron.2010.01.034.
Hafting, T., Fyhn, M., Molden, S., et al. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436, 801–806. doi:10.1038/nature03721.
Hampton, R. R. (2005). Monkey perirhinal cortex is critical for visual memory, but not for visual perception: Reexamination of the behavioural evidence from monkeys. Quarterly journal of experimental psychology. B, 58, 283–299. doi:10.1080/02724990444000195.
Hannula, D. E., & Ranganath, C. (2009). The eyes have it: Hippocampal activity predicts expression of memory in eye movements. Neuron, 63, 592–599. doi:10.1016/j.neuron.2009.08.025.
Harand, C., Bertran, F., La Joie, R., et al. (2012). The hippocampus remains activated over the long term for the retrieval of truly episodic memories. PLoS One, 7, e43495. doi:10.1371/journal.pone.0043495.
Hargreaves, E. L., Rao, G., Lee, I., & Knierim, J. J. (2005). Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science, 308, 1792–1794. doi:10.1126/science.1110449.
Hartley, T., Bird, C. M., Chan, D., et al. (2007). The hippocampus is required for short-term topographical memory in humans. Hippocampus, 17, 34–48. doi:10.1002/hipo.20240.
Hassabis, D., Kumaran, D., Vann, S. D., & Maguire, E. A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences USA, 104, 1726–1731. doi:10.1073/pnas.0610561104.
Hasselmo, M. E. (2012). How we remember: Brain mechanisms of episodic memory. Cambridge, MA: MIT Press.
Henke, K. (2010). A model for memory systems based on processing modes rather than consciousness. Nature Reviews Neuroscience, 11, 523–532. doi:10.1038/nrn2850.
Hodges, W. (2001). Formal features of compositionality. Journal of Logic, Language and Information, 10, 7–28.
Hoffman, K. L., & McNaughton, B. L. (2002). Coordinated reactivation of distributed memory traces in primate neocortex. Science, 297, 2070–2073. doi:10.1126/science.1073538.
Holdstock, J. S., Gutnikov, Sa, Gaffan, D., & Mayes, a R. (2000). Perceptual and mnemonic matching-to-sample in humans: Contributions of the hippocampus, perirhinal and other medial temporal lobe cortices. Cortex, 36, 301–322.
Holdstock, J. S., Shaw, C., & Aggleton, J. P. (1995). The performance of amnesic subjects on tests of delayed matching-to-sample and delayed matching-to-position. Neuropsychologia, 33, 1583–1596.
Jacobsen, C. F. (1935). Functions of frontal association areasin primates. Archives of Neurology & Psychiatry, 33, 558. doi:10.1001/archneurpsyc.1935.02250150108009.
Jadhav, S. P., Kemere, C., German, P. W., & Frank, L. M. (2012). Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory. Science, 336, 1454–1458. doi:10.1126/science.1217230.
James, L. E., & MacKay, D. G. (2001). H.M., word knowledge, and aging: Support for a new theory of long-term retrograde amnesia. Psychological Science, 12, 485–492.
Jonides, J., Lewis, R. L., Nee, D. E., et al. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193–224. doi:10.1146/annurev.psych.59.103006.093615.
Kahana, M. J., Howard, M. W., & Polyn, S. M. (2008). Associative retrieval processes in episodic memory. In J. H. Byrne (Ed.), Learning and Memory: A Comprehensive Reference (pp. 467–490). Oxford: Academic Press.
Kelly, S. D. (2001). The non-conceptual content of perceptual experience: Situation dependence and fineness of grain. Philosophy and Phenomenological Research, 62, 601–608. doi:10.1111/j.1933-1592.2001.tb00076.x.
Kim, S., Jeneson, A., van der Horst, A. S., et al. (2011). Memory, visual discrimination performance, and the human hippocampus. Journal of Neuroscience, 31, 2624–2629. doi:10.1523/JNEUROSCI.5954-10.2011.
Klein, S. B. (2013). Making the case that episodic recollection is attributable to operations occurring at retrieval rather than to content stored in a dedicated subsystem of long-term memory. Frontiers in Behavioral Neuroscience, 7, 3. doi:10.3389/fnbeh.2013.00003.
Köhler, W. (1925). The mentality of apes. London: Routledge, Trench, Trubner & Co., Ltd.
Kudrimoti, H. S., Barnes, C. A., & McNaughton, B. L. (1999). Reactivation of hippocampal cell assemblies: Effects of behavioral state, experience, and EEG dynamics. Journal of Neuroscience, 19, 4090–4101.
Lee, A. C. H., Bussey, T. J., Murray, E. A., et al. (2005). Perceptual deficits in amnesia: Challenging the medial temporal lobe “mnemonic” view. Neuropsychologia, 43, 1–11. doi:10.1016/j.neuropsychologia.2004.07.017.
Lee, A. C. H., & Rudebeck, S. R. (2010). Human medial temporal lobe damage can disrupt the perception of single objects. Journal of Neuroscience, 30, 6588–6594. doi:10.1523/JNEUROSCI.0116-10.2010.
Lee, A. C. H., Yeung, L.-K., & Barense, M. D. (2012). The hippocampus and visual perception. Frontiers in Human Neuroscience, 6, 91. doi:10.3389/fnhum.2012.00091.
Lee, A. K., & Wilson, Ma. (2004). A combinatorial method for analyzing sequential firing patterns involving an arbitrary number of neurons based on relative time order. Journal of Neurophysiology, 92, 2555–2573. doi:10.1152/jn.01030.2003.
Lee, A. K., & Wilson, M. A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36, 1183–1194.
Levy, D. A., Bayley, P. J., & Squire, L. R. (2004). The anatomy of semantic knowledge: Medial vs. lateral temporal lobe. Proceedings of the National Academy of Sciences USA, 101, 6710–6715. doi:10.1073/pnas.0401679101.
Levy, W. B. W. (1996). A sequence predicting CA3 is a flexible associator that learns and uses context to solve hippocampal-like tasks. Hippocampus, 6, 579–590.
Lewis, D. (1973). Counterfactuals. Oxford: Blackwell.
Lindsay, D. S., Allen, B. P., Chan, J. C. K., & Dahl, L. C. (2004). Eyewitness suggestibility and source similarity: Intrusions of details from one event into memory reports of another event. Journal of Memory and Language, 50, 96–111. doi:10.1016/j.jml.2003.08.007.
Lisman, J. E. (1999). Relating hippocampal circuitry to function: Recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron, 22, 233–242.
Loftus, E. F. (1993). The reality of repressed memories. American Psychologist, 48, 518–537.
Loftus, E. F., & Palmer, J. C. (1974). Reconstruction of automobile destruction: An example of the interaction between language and memory. Journal of Verbal Learning and Verbal Behavior, 13, 585–589. doi:10.1016/S0022-5371(74)80011-3.
Loftus, E. F., & Pickrell, J. E. (1995). The formation of false memories. Psychiatric Annals, 25, 720–725.
Machery, E. (2009). Doing without concepts. Oxford: Oxford University Press.
Marsh, E. J., Eslick, A. N., & Fazio, L. K. (2008). False Memories. In J. H. Byrne (Ed.), Learning and memory: A comprehensive reference (pp. 221–238). Oxford: Academic Press.
Martin, C. B., & Deutscher, M. (1966). Remembering. Philosophy Review, 75, 161. doi:10.2307/2183082.
Martin-Ordas, G., Haun, D., Colmenares, F., & Call, J. (2010). Keeping track of time: Evidence for episodic-like memory in great apes. Animal Cognition, 13, 331–340. doi:10.1007/s10071-009-0282-4.
McCabe, D. P., Roediger, H. L., & Karpicke, J. D. (2011). Automatic processing influences free recall: Converging evidence from the process dissociation procedure and remember-know judgments. Memory & Cognition, 39, 389–402. doi:10.3758/s13421-010-0040-5.
McClelland, J. J. L., McNaughton, B. L. B., & O’Reilly, R. R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory. Psychological Review, 102, 419–457.
McKoon, G., & Ratcliff, R. (1986). Automatic activation of episodic information in a semantic memory task. Journal of Experimental Psychology Learning Memory and Cognition, 12, 108–115.
Michaelian, K. (2010). Is memory a natural kind? Memory Studies, 4, 170–189. doi:10.1177/1750698010374287.
Michaelian, K. (2011). Generative memory. Philosophy of Psychology, 24, 323–342. doi:10.1080/09515089.2011.559623.
Michaelian, K. (2011b). The information effect: Constructive memory, testimony, and epistemic luck. Synthese, 190, 2429–2456. doi:10.1007/s11229-011-9992-7.
Milner, B. (1963). Effects of different brain lesions on card sorting. Archives of Neurology, 9, 90. doi:10.1001/archneur.1963.00460070100010.
Morris, R., Garrud, P., Rawlins, J., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.
Morris, R. G. (2001). Episodic-like memory in animals: Psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 356, 1453–1465. doi:10.1098/rstb.2001.0945.
Mroczko-Wąsowicz, A., & Werning, M. (2012). Synesthesia, sensory-motor contingency, and semantic emulation: How swimming style-color synesthesia challenges the traditional view of synesthesia. Frontiers in Psychology, 3, 279. doi:10.3389/fpsyg.2012.00279.
Mullally, S. L., Hassabis, D., & Maguire, E. A. (2012). Scene construction in amnesia: An FMRI study. Journal of Neuroscience, 32, 5646–5653. doi:10.1523/JNEUROSCI.5522-11.2012.
Mullally, S. L., Vargha-Khadem, F., & Maguire, E. A. (2014). Scene construction in developmental amnesia: An fMRI study. Neuropsychologia, 52, 1–10. doi:10.1016/j.neuropsychologia.2013.11.001.
Müller, G. E., & Pilzecker, A. (1900). Experimentelle Beiträge zur Lehre vom Gedächtnis. Zeitschrift für Psychologie. Ergänzungsband, 1, 1–300.
Nádasdy, Z., Hirase, H., Czurkó, A., et al. (1999). Replay and time compression of recurring spike sequences in the hippocampus. Journal of Neuroscience, 19, 9497–9507.
Nadel, L., & Moscovitch, M. (1998). Hippocampal contributions to cortical plasticity. Neuropharmacology, 37, 431–439.
Nadel, L., & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7, 217–227. doi:10.1016/S0959-4388(97)80010-4.
Nadel, L., Samsonovich, A., Ryan, L., & Moscovitch, M. (2000). Multiple trace theory of human memory: computational, neuroimaging, and neuropsychological results. Hippocampus, 10, 352–368.
Naqshbandi, M., & Roberts, W. A. (2006). Anticipation of future events in squirrel monkeys (Saimiri sciureus) and rats (Rattus norvegicus): Tests of the Bischof-Kohler hypothesis. Journal of Comparative Psychology, 120, 345–357. doi:10.1037/0735-7036.120.4.34.
O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34, 171–175.
O’Keefe, J., & Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford: Clarendon Press.
O’Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus, 3, 317–330. doi:10.1002/hipo.450030307.
Owen, A. M., Sahakian, B. J., Semple, J., et al. (1995). Visuo-spatial short-term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man. Neuropsychologia, 33, 1–24.
Pagin, P., & Westerståhl, D. (2010). Compositionality. In C. Maienborn, K. von Heusinger, & P. Portner (Eds.), Semantics: an international handbook of natural language meaning. Berlin: Mouton de Gruyter.
Parsons, T. (1990). Events in the semantics of english. Cambridge: MIT Press.
Patihis, L., Ho, L. Y., Tingen, I. W., et al. (2014). Are the “memory wars” over? A scientist-practitioner gap in beliefs about repressed memory. Psychological Science, 25, 519–530. doi:10.1177/0956797613510718.
Pavlides, C., & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. Journal of Neuroscience, 9, 2907–2918.
Paxton, R., & Hampton, R. R. (2009). Tests of planning and the Bischof-Köhler hypothesis in rhesus monkeys (Macaca mulatta). Behavioural Processes, 80, 238–246. doi:10.1016/j.beproc.2008.12.016.
Payne, D. G. (1987). Hypermnesia and reminiscence in recall: A historical and empirical review. Psychological Bulletin, 101, 5–27. doi:10.1037/0033-2909.101.1.5.
Paz, R., Gelbard-Sagiv, H., Mukamel, R., et al. (2010). A neural substrate in the human hippocampus for linking successive events. Proceedings of the National Academy of Sciences USA, 107, 6046–6051. doi:10.1073/pnas.0910834107.
Pianesi, F., & Varzi, A. C. (2000). Events and Event Talk: An Introduction. In J. Higginbotham, F. Pianesi, & A. C. Varzi (Eds.), Speaking of Events (pp. 3–47). New York, NY: Oxford University Press.
Pyka, M., & Cheng, S. (2014). Pattern association and consolidation emerges from connectivity properties between cortex and hippocampus. PLoS One, 9, e85016. doi:10.1371/journal.pone.0085016.
Raby, C. R., Alexis, D. M., Dickinson, A., & Clayton, N. S. (2007). Planning for the future by western scrub-jays. Nature, 445, 919–921.
Raffmann, D. (1995). On the Persistence of Phenomenology. In T. Metzinger (Ed.), Conscious Experience (pp. 293–308). Paderborn: Schöningh/Imprint Academic.
Ramadan, W., Eschenko, O., & Sara, S. J. (2009). Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PloS ONE, 4(8). doi:10.1371/journal.pone.0006697.
Ranganath, C., & Blumenfeld, R. S. (2005). Doubts about double dissociations between short- and long-term memory. Trends in Cognitive Sciences, 9, 374–380. doi:10.1016/j.tics.2005.06.009.
Ranganath, C., Cohen, M. X., & Brozinsky, C. J. (2005). Working memory maintenance contributes to long-term memory formation: Neural and behavioral evidence. J Cogn Neurosci, 17, 994–1010. doi:10.1162/0898929054475118.
Ranganath, C., & D’Esposito, M. (2001). Medial temporal lobe activity associated with active maintenance of novel information. Neuron, 31, 865–873. doi:10.1016/S0896-6273(01)00411-1.
Ribot, T. (1881). Les maladies de la mémoire. Paris: Germer Baillare.
Ruchkin, D. S., Grafman, J., Cameron, K., & Berndt, R. S. (2003). Working memory retention systems: A state of activated long-term memory. Behavioral and Brain Science, 26, 709–728. discussion 728–77.
Ryan, L., Nadel, L., Keil, K., et al. (2001). Hippocampal complex and retrieval of recent and very remote autobiographical memories: Evidence from functional magnetic resonance imaging in neurologically intact people. Hippocampus, 11, 707–714. doi:10.1002/hipo.1086.
Ryle, G. (1949). The concept of mind. London: Hutchinson & Company.
Saksida, L. M., Bussey, T. J., Buckmaster, C. A., & Murray, E. A. (2006). No effect of hippocampal lesions on perirhinal cortex-dependent feature-ambiguous visual discriminations. Hippocampus, 16, 421–430. doi:10.1002/hipo.20170.
Schacter, D. L. (2012). Constructive memory: Past and future. Dialogues in Clinical Neuroscience, 14, 7–18.
Schacter, D. L. (2002). The seven sins of memory: How the mind forgets and remembers. New York: Houghton Mifflin.
Schacter, D. L., & Dodson, C. S. (2001). Misattribution, false recognition and the sins of memory. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 1385–1393. doi:10.1098/rstb.2001.0938.
Scoboria, A., Mazzoni, G., Kirsch, I., & Milling, L. S. (2002). Immediate and persisting effects of misleading questions and hypnosis on memory reports. Journal of Experimental Psychology: Applied, 8, 26–32. doi:10.1037//1076-898X.8.1.26.
Scoville, W., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Psychiatry, 20, 11–21.
Shanton, K., & Goldman, A. (2010). Simulation theory. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 527–538. doi:10.1002/wcs.33.
Sharon, T., Moscovitch, M., & Gilboa, A. (2011). Rapid neocortical acquisition of long-term arbitrary associations independent of the hippocampus. Proceedings of the National Academy of Sciences USA, 108, 1146–1151. doi:10.1073/pnas.1005238108.
Shrager, Y., Gold, J. J., Hopkins, R. O., & Squire, L. R. (2006). Intact visual perception in memory-impaired patients with medial temporal lobe lesions. Journal of Neuroscience, 26, 2235–2240. doi:10.1523/JNEUROSCI.4792-05.2006.
Skaggs, W., McNaughton, B., Wilson, M., & Barnes, C. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6, 149–172. doi:10.1002/(SICI)1098-1063(1996)6:2%3C149:AID-HIPO6%3E3.0.CO;2-K.
Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271, 1870–1873. doi:10.1126/science.271.5257.1870.
Skaggs, W. E., McNaughton, B. L., Permenter, M., et al. (2007). EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus. Journal of Neurophysiology, 98, 898–910. doi:10.1152/jn.00401.2007.
Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology, 5, 169–177.
Squire, L. R., & Zola-Morgan, S. (1988). Memory: Brain systems and behavior. Trends in Neurosciences, 11, 170–175.
Steinvorth, S., Levine, B., & Corkin, S. (2005). Medial temporal lobe structures are needed to re-experience remote autobiographical memories: Evidence from H.M. and W.R. Neuropsychologia, 43, 479–496. doi:10.1016/j.neuropsychologia.2005.01.001.
Suddendorf, T. (2013). Mental time travel: Continuities and discontinuities. Trends in Cognitive Sciences, 17, 151–152. doi:10.1016/j.tics.2013.01.011.
Suddendorf, T., & Corballis, M. C. (1997). Mental time travel and the evolution of the human mind. Genetic Social and General Psychology Monographs, 123, 133–167.
Suddendorf, T., & Corballis, M. C. (2007). The evolution of foresight: What is mental time travel, and is it unique to humans? Behavioral and Brain Science, 30, 299–313. doi:10.1017/S0140525X07001975. discussion 313–51.
Suddendorf, T., & Corballis, M. C. (2008). New evidence for animal foresight? Animal Behaviour, 75, e1–e3. doi:10.1016/j.anbehav.2008.01.006.
Suzuki, W. A. (2009). Perception and the medial temporal lobe: Evaluating the current evidence. Neuron, 61, 657–666. doi:10.1016/j.neuron.2009.02.008.
Toribio, J. (2007). Nonconceptual content. Philos. Compass, 2, 445–460. doi:10.1111/j.1747-9991.2007.00075.x.
Toth, J. P., & Hunt, R. R. (1999). Not one versus many, but zero versus any: Structure and function in the context of the multiple memory systems debate. In J. K. Foster & M. Jelicic (Eds.), Memory: Systems, process, or function? Debates in psychology (pp. 232–272). New York: Oxford University Press.
Trustwell, R. (2011). Events, phrases, and questions. Oxford: Oxford University Press.
Tulving, E. (1983). Elements of episodic memory. Oxford: Clarendon Press.
Tulving, E. (1972). Episodic and semantic memory. In E. Tulving & W. Donaldson (Eds.), Organization of memory (pp. 381–402). New York: Academic Press Inc.
Tulving, E. (1985). Memory and consciousness. Canadian Journal Psychology, 26, 1–26.
Tulving, E. (1993). What Is episodic memory? Current Directions in Psychological Science, 2, 67–70. doi:10.1111/1467-8721.ep10770899.
Tulving, E. (1995). Organization of memory: Quo vadis. In M. Gazzaniga (Ed.), Cognitive neuroscience (pp. 839–847). Cambridge, MA: MIT Press.
Tulving, E., Kapur, S., Craik, F. I., et al. (1994). Hemispheric encoding/retrieval asymmetry in episodic memory: Positron emission tomography findings. Proceedings of the National Academy of Sciences USA, 91, 2016–2020.
Vargha-Khadem, F., Gadian, D., Watkins, K., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277, 376–380. doi:10.1126/science.277.5324.376.
Wallenstein, G. V., Eichenbaum, H., & Hasselmo, M. E. (1998). The hippocampus as an associator of discontiguous events. Trends in Neurosciences, 21, 317–323.
Weiler, J. A., Suchan, B., & Daum, I. (2010). Foreseeing the future: Occurrence probability of imagined future events modulates hippocampal activation. Hippocampus, 20, 685–690. doi:10.1002/hipo.20695.
Weiss, C., Bouwmeester, H., Power, J. M., & Disterhoft, J. F. (1999). Hippocampal lesions prevent trace eyeblink conditioning in the freely moving rat. Behavioural Brain Research, 99, 123–132.
Werning, M. (2003). Ventral versus dorsal pathway: The source of the semantic object/event and the syntactic noun/verb distinction? Behavioral and Brain Science, 26, 299–300. doi:10.1017/S0140525X03400071.
Werning, M. (2005). Right and wrong reasons for compositionality. In M. Werning, E. Machery, & G. Schurz (Eds.), The compositionality of meaning and content (Vol. I: Foundational Issues, pp. 285–309). Frankfurt: Ontos Verlag.
Werning, M. (2010). Descartes discarded? Introspective self-awareness and the problems of transparency and compositionality. Consciousness and Cognition, 19, 751–761.
Werning, M. (2012). Non-symbolic compositional representation and its neuronal foundation: Towards an emulative semantics. In M. Werning, W. Hinzen, & E. Machery (Eds.), The Oxford handbook of compositionality (pp. 633–654). Oxford: Oxford University Press.
Werning, M., Hinzen, W., & Machery, E. (2012). The Oxford handbook of compositionality. Oxford: Oxford University Press.
Wheeler, M. A., Stuss, D. T., & Tulving, E. (1995). Frontal lobe damage produces episodic memory impairment. Journal of the International Neuropsychological Society, 1, 525–536.
Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265, 676–679. doi:10.1126/science.8036517.
Wood, E. R., Dudchenko, P. A., & Eichenbaum, H. (1999). The global record of memory in hippocampal neuronal activity. Nature, 397, 613–616. doi:10.1038/17605.
Zentall, T. R., Clement, T. S., Bhatt, R. S., & Allen, J. (2001). Episodic-like memory in pigeons. Psychonomic Bulletin and Review, 8, 685–690.
Zola-Morgan, S., Squire, L. R., Amaral, D. G., & Suzuki, Wa. (1989). Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. Journal of Neuroscience, 9, 4355–4370.
Acknowledgments
We thank Thomas Suddendorf for helpful discussions and Kevin Reuter for comments on the manuscript. This work was supported by a Grant (SFB 874, project B2) from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) and a Grant from the Stiftung Mercator.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
In Sect. 3.4 we distinguish between an actual and temporally enduring mnemonic representation and a possible and only instantaneous temporally explicit mnemonic simulation. The mnemonic representation is a compositional representation in which the temporal succession of the events in the episode is encoded by some structure among the representational constituents. This can be formally accounted for in the following way:
-
(R1)
Let \({\mathbb {R}}=\left( {\hbox {R}, \{\hbox {s}\}} \right) \) be a representational structure, where \(\hbox {R}\) is the set of representational states and \(\hbox {s}:\hbox {R}\times \hbox {R}\rightarrow \hbox {R}\) a thereon defined binary and recursive structure building operation; if \(\hbox {r}^{{\prime }{\prime }}=\hbox {s}\left( {\hbox {r}, \hbox {r}^{\prime }}\right) \), \(\hbox {r}\) and \(\hbox {r}^{\prime }\) are called the representational constituents of \(\hbox {r}^{{\prime }{\prime }}\).
-
(R2)
Let \({\mathbb {V}}=\left( {\hbox {V}, \{\langle \cdot ,\cdot \rangle \}} \right) \) be an event structure where \(\hbox {V}\) is the set of events (including episodes) and \(\langle \cdot ,\cdot \rangle \) the previously defined binary and recursive episode building operation \(\langle \cdot ,\cdot \rangle :\hbox {V}\times \hbox {V}\rightarrow \hbox {V}\).
-
(R3)
Let \(\upmu :\hbox {R}\rightarrow \hbox {V}\) be a mapping from the set of representational states into the set of events. \(\upmu (\hbox {r})=\hbox {e}\) means that \(\hbox {e}\) is the event or episode represented by the primitive or complex representational state \(\hbox {r}\).
-
(R4)
Then the mapping \(\upmu \) is a homomorphism from the representational structure \({\mathbb {R}}\) into the event structure \({\mathbb {V}}\). That is, for every \(\hbox {r}, \hbox {r}^{\prime }\in \hbox {R},\,\upmu \left( {\hbox {s}\left( {\hbox {r}, \hbox {r}^{\prime }}\right) }\right) =\langle \upmu ( \hbox {r} ),~\upmu (\hbox {r}^{\prime })\rangle \).
Statement (R4) is equivalent to the claim that the representational structure is compositional: The content \(\upmu \) of a complex representational state \(\hbox {s}\left( {\hbox {r}, \hbox {r}^{\prime }}\right) \) is a structure-dependent function, namely \(\langle \cdot ,\cdot \rangle \), of the contents of its representational constituents \(\hbox {r}\) and \(\hbox {r}^{\prime }\), i.e., \(\upmu \left( \hbox {r}\right) \) and \(\upmu \left( {\hbox {r}^{\prime }}\right) \).
In a temporally explicit mnemonic simulation the temporal succession of events in the object domain is represented itself by a temporal succession of events in the representational domain. We can formally account for this in the following way:
-
(Q1)
Let \({\mathbb {V}}=\left( {\hbox {V}, \{\langle \cdot ,\cdot \rangle \}} \right) \) again be our event structure, where \(\hbox {V}\) is the set of events and \(\langle \cdot ,\cdot \rangle \) the episode building operation.
-
(Q2)
Let \({\mathbb {Q}}=\left( {\hbox {Q}, \{\langle \cdot ,\cdot \rangle \}} \right) \) be the simulational structure, which itself contains a set of events \(\hbox {Q}\), i.e., \(\hbox {Q}\subseteq \hbox {V}\), together with the operation \(\langle \cdot ,\cdot \rangle \), which builds temporally succeeding sequences of events. \({\mathbb {Q}}\) hence is a substructure of \({\mathbb {V}}\).
-
(Q3)
Let the mapping \(\upnu : \hbox {Q} \rightarrow \hbox {V}\) assign each primitive or complex simulational state the primitive or complex event it, by simulation, represents.
-
(Q4)
Then the mapping \(\upnu \) satisfies the following condition: For every \(\hbox {q},\hbox {q}^{\prime }\in \hbox {Q}, \upnu \left( \langle {\hbox {q}, \hbox {q}^{\prime }}\rangle \right) = \langle \upnu \left( \hbox {q} \right) , \upnu (\hbox {q}^{\prime })\rangle \).
In this account, the representational content of a temporal succession of simulational states is just the episode comprising the temporally succeeding representational contents of each simulational state. Mathematically speaking, \(\upnu \), unlike \(\upmu \), is not only a homomorphism but an endomorphism.
Rights and permissions
About this article
Cite this article
Cheng, S., Werning, M. What is episodic memory if it is a natural kind?. Synthese 193, 1345–1385 (2016). https://doi.org/10.1007/s11229-014-0628-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11229-014-0628-6