Abstract
The Necker cube and the productive class of related stimuli involving multiple depth interpretations driven by corner-like line junctions are often taken to be ambiguous. This idea is normally taken to be as little in need of defense as the claim that the Necker cube gives rise to multiple distinct percepts. In the philosophy of language, it is taken to be a substantive question whether a stimulus that affords multiple interpretations is a case of ambiguity. If we take into account what have been identified as hallmark features of ambiguity and look at the empirical record, it appears that the Necker cube and related stimuli are not ambiguous. I argue that this raises problems for extant models of multistable perception in cognitive neuroscience insofar as they are purported to apply to these stimuli. Helpfully, similar considerations also yield reasons to suggest that the relevant models are well motivated for other instances of multistable perception. However, a different breed of model seems to be required for the Necker cube and related stimuli. I end with a sketch how one may go about designing such a model relying on oscillatory patters in neural firing. I suggest that distinctions normally confined to the philosophy of language are important for the study of perception, a perspective with a growing number of adherents.
Similar content being viewed by others
Notes
The term “ambiguity” may have other connotations that are not represented in these diagrams, but this is not important for the arguments to follow.
References
Albers, J. (1977). Despite straight lines. Cambridge: MIT Press.
Ashworth, E. J. (1991). Signification and modes of signifying in thirteenth-century logic: A preface to aquinas on analogy. Medieval Philosophy and Theology., 1, 39–67.
Atlas, J. (1989). Philosophy without ambiguity. Oxford: Clarendon Press.
Atlas, J. (2005). Logic, meaning, and conversation. Oxford: Oxford University Press.
Babich, S., & Standing, L. (1981). Satiation effects with reversible figures. Perceptual and Motor Skills, 52, 203–210.
Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, 94, 115–147.
Biederman, I. (2001). Recognizing depth-rotated objects: A review of recent research and theory. Spatial Vision, 13, 241–253.
Biederman, I., & Ju, G. (1988). Surface vs. edge based determinants of visual recognition. Cognitive Psychology, 20(1), 38–64.
Blakemore, C., & Cooper, G. F. (1970). Development of the brain depends on the visual environment. Nature, 228, 477–478.
Blasdel, G., Obermayer, K., & Kiorpes, L. (1995). Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys. Visual Neuroscience, 12, 589–603.
Borisyuk, R., Chik, D., & Kazanovich, Y. (2009). Visual perception of ambiguous figures: Synchronization based neural models. Biological Cybernetics, 100, 491–504.
Borsellino, A., De Marco, A., Allazetta, A., Rinsei, S., & Bartolini, B. (1972). Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik, 10, 139.
Britz, J., Landis, T., & Michels, C. M. (2009). Right parietal brain activity precedes perceptual alternation of bistable stimuli. Cerebral Cortex, 19, 55–65.
Chalmers, D. (2004). How can we construct a science of consciousness? In M. Gazzaniga (Ed.), The cognitive neurosciences III. Cambridge: MIT Press.
Chapman, B., Stryker, M. P., & Bonhoeffer, T. (1996). Development of orientation preference maps in ferret primary visual cortex. Journal of Neuroscience, 16(20), 6443–6453.
Cohen, L. (1959). Perception of reversible figures after brain injury. Archives of Neurology and Psychiatry, 81, 765–775.
Corbetta, M., Shulman, G. L., Miezin, F. M., & Petersen, S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science, 270, 802–805.
Crair, M. C., Gillespie, D. C., & Stryker, M. P. (1998). The role of visual experience in the development of columns in cat visual cortex. Science, 279, 566–570.
Crick, F., & Koch, C. (1998). Consciousness and neuroscience. Cerebral Cortex, 8, 97–107.
Crick, F., & Koch, C. (2003). A framework for consciousness. Nature Neuroscience, 6(2), 119–126.
Cumming, S., (ms). (1989). The attentional foundations of coherence. Manuscript, UCLA.
Deregowski, J. (1969). Perception of the two-pronged trident by two- and three- dimensional perceivers. Journal of Experimental Psychology, 82, 9–13.
Deregowski, J. (1989). Real space and represented space: Cross-cultural perspectives. Behavioral and Brain Sciences, 12, 51–119.
Deregowski, J., & Bentley, A. M. (1986). Perception of pictorial space by Bushmen. International Journal of Psychology, 21, 743–752.
Deregowski, J., & Dziurawiec, S. (1986). Some aspects of comprehension of technical diagrams: An intercultural study. Le Travail Humain, 49, 43–60.
Enns, J. T., & Rensink, R. A. (1991). Preattentive recovery of three-dimensional orientation from line drawings. Psychological Review, 98(3), 335–351.
Feldman, J. A., & Ballard, D. H. (1982). Connectionist models and their properties. Cognitive Science, 6, 205–254.
Fries, P. (2005). A mechanism for cognitive dynamics: Neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–479.
Frost, R., Feldman, L. B., & Katz, L. (1990). Phonological ambiguity and lexical ambiguity: Effects on visual and auditory word recognition. Journal of Experimental Psychology, 16, 569–580.
Gillam, B. (1979). Even possible figures can look impossible. Perception, 8, 229–232.
Greenberg, G. (2011). The Semiotic Spectrum. Doctoral dissertation. Rutgers University.
Grice, H. P. (1975). Logic and conversation. In J. Kimball (Ed.), Syntax and semantics (Vol. 3, pp. 139–151). New York: Academic Press.
Harris, C. M., Hainline, L., Abramov, I., et al. (1988). The distribution of fixation durations in infants and naïve adults. Vision Research, 28, 419–432.
Hayworth, K. J., & Biederman, I. (2006). Neural evidence for intermediate representations in object recognition. Vision Research, 46, 4026–4031.
Hochberg, J. E., & Brooks, V. (1962). Pictorial recognition as an unlearned ability. American Journal of Psychology, 75, 624–628.
Isoglu-Alkac, U., & Strüber, D. (2006). Necker cube reversals during long-term EEG recordings: Sub-bands of alpha activity. International Journal of Psychophysiology, 59(2), 179–189.
Kayaert, G., Biederman, I., Op de Beeck, H., & Vogels, R. (2005). Tuning for shape dimensions in macaque inferior temporal cortex. European Journal of Neuroscience, 22, 212–224.
Kayaert, G., Biederman, I., & Vogels, R. (2003). Shape tuning in macaque inferior temporal cortex. Journal of Neuroscience, 23, 3016–3027.
Kanwisher, N., Stanley, D., & Harris, A. (1999). The fusiform face area is selective for faces not animals. NeuroReport, 10, 183–187.
Kawabata, N. (1987). Interpretive process of depth in line drawing. Systems and computers in Japan, 18(7), 103–109.
Kawabata, N., & Yamagami, K. (1978). Visual fixation points and depth perception. Vision Research, 18, 853–854.
Klink, P. C., van Ee, R., Nijs, M. M., Bruwer, G. J., Noest, A. J., & van Wezel, R. J. A. (2008). Early interactions between neuronal adaptation and voluntary control of perceptual choices in bistable vision. Journal of Vision, 8(5), 1–18.
Koralus, P. (2010). Semantics in Philosophy and Cognitive Neuroscience. PhD Dissertation. Princeton University.
Koralus, P. (2013). Attention, Consciousness, and the semantics of questions. Synthese, doi:10.1007/s11229-013-0382-1.
Koralus, P. (2014). The erotetic theory of attention: Questions, focus, and distraction. Mind and Language, 29(1), 26–50.
Kurtzi, Z., & Kanwisher, N. (2000). Cortical regions involved in processing object shape. Journal of Neuroscience, 20(9), 3310–3318.
Leopold, D. A., & Logothetis, N. K. (1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Sciences, 3, 254–264.
Long, G. M., & Toppino, T. C. (2004). Enduring interest in perceptual ambiguity: Alternating views of reversible figures. Psychological Bulletin, 130(5), 748–768.
Long, G. M., Toppino, T. C., & Kostenbauder, J. F. (1983). As the cube turns: Evidence for two processes in the perception of a dynamic reversible figure. Perception and Psychophysics, 34(1), 29–38.
Lowe, D. (1984). Perceptual organization and visual recognition. Unpublished doctoral dissertation, Stanford University, Stanford, CA.
Mathes, B., Strüber, D., Stadler, M. A., & Basar-Eroglu, C. (2006). Voluntary control of Necker cube reversals modulates the EEG delta- and gamma-band response. Neuroscience Letters, 402, 145–149.
McCone, E., Kanwisher, N., & Duchaine, B. (2007). Can generic expertise explain special processing for faces? Trends in Cognitive Science, 11, 8–15.
Meng, M., & Tong, F. (2004). Can attention selectively bias bistable perception? Differences between binocular rivalry and ambiguous figures. Journal of Vision, 4, 539–551.
Moreno-Bote, R., Rinzel, J., & Rubin, N. (2007). Noise-induced alternations in an attractor network model of perceptual bistability. Journal of Neurophysiology, 98, 1125–1139.
Mulder, J. A., & Dawson, R. J. M. (1990). Reconstructing polyhedral scenes from single two- dimensional images: The orthogonality hypothesis. In P. K. Patel-Schneider (Ed.), Proceedings of the 8th Biennial Conference of the CSCSI (pp. 238–244). Palo Alto, CA: Morgan-Kaufmann.
Ogawa, Y., Isokawa, T., Matsui, N., Murata, T. (2000). “A neural network model for perceptual alternation of ambiguous figures”. Proceedings IEEE Intl. Workshop on robot and human interactive communication, pp. 264–269.
O’Reilly, R., & Munakata, Y. (2000). Computational explorations in cognitive neuroscience. Cambridge: MIT Press.
Peissig, J. J., Wasserman, E. A., Young, M. E., & Biederman, I. (2002). Learning an object from multiple views enhances its recognition in an orthogonal rotational axis in pigeons. Vision Research, 42, 2051–2062.
Perkins, D. N. (1968). “Cubic corners”. Quarterly Progress Report Research Lab in Electronics, No. 89, Massachusetts Institute of Technology.
Perkins, D. N. (1972). Visual discrimination between rectangular and nonrectangular para lelpipeds. Perception and Psychophysical, 12, 396–400.
Perkins, D. N. (1971). Geometry and the Perception of Pictures: Three Studies, Project Zero, Technical Report no. 5. Cambridge, MA: Harvard University Press.
Peterson, M. A., & Gibson, B. S. (1991). Directing spatial attention within an object: altering the functional equivalence of shape descriptions. Journal of Experimental Psychology, Human Perception and Performance, 17(1), 170–182.
Pheiffer, C. H., Eure, S. B., & Hamilton, C. B. (1956). Reversible figures and eye- movements. American Journal of Psychology, 69, 452–455.
Pylkkänen, L., & McElree, B. (2007). An MEG study of silent meaning. Journal of Cognitive Neuroscience, 19(11), 1905–1921.
Reisberg, D., & O’Shaughnessy, M. (1984). Diverting subjects’ concentration slows figural reversals. Perception, 13(4), 461–8.
Richards, J. E., & Gibson, T. L. (1997). Extended visual fixation in young infants: Look distributions, heart rate changes, and attention. Child Development, 68, 1041–1056.
Rock, I. (1983). The logic of perception. Cambridge, MA: MIT Press.
Romei, V., Brodbeck, V., Michel, C., Amedi, A., Pascual-Leone, A., & Thut, G. (2008). Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cerebral Cortex, 18(9), 2010–2018.
Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recognition with cortex-like mechanisms. IEEE Transaction Pattern Analysis and Machine Intelligence, 29(3), 411–425.
Seubert, J., Humphreys, G. W., Muller, H. J., & Gramann, K. (2008). Straight after the turn: the role of the parietal lobes in egocentric space processing. Neurocase, 14(2), 204–19.
Shepard, R. N. (1981). Perceptual organization. In M. Kubovy & J. Pomerantz (Eds.), Psychophysical complementarity. Hillsdale, NJ: Erlbaum Associates.
Shepard, R. N. (1990). Mind sights. New York: Freeman and Company.
Shevelev, I. A., Lazareva, N. A., Novikova, R. V., Tikhomirov, A. S., Sharaev, G. A., & Cuckiridze, D. Y. (2001). Tuning to Y-like figures in the cat striate neurons. Brain Research Bulletin, 54(5), 543–551.
Strüber, Daniel, & Stadler, Michael. (1999). Differences in top-down influences on the reversal rate of different categories of reversible figures. Perception, 28, 1185–1196.
Suppes, P., Cohen, M., Laddaga, R., Anliker, J., & Floyd, R. (1983). A procedural theory of eye movements in doing arithmetic. Journal of Mathematical Psychology, 27(4), 341–369.
Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuroscience, 19, 109–139.
Trehub, A. (1991). The cognitive brain. Cambridge: MIT Press.
Treisman, A., & Gelade, G. (1980). A feature integration theory of attention. Cognitive Psychology, 12, 97–136.
Vidal, J. R., Chaumon, M., O’Reagan, J. K., & Tallon-Baudry, C. (2006). Visual grouping and the focusing of attention induce gamma-band oscillations at different frequencies in human magnetoencephalogram signals. Journal of Cognitive Neuroscience, 18(11), 1850–1862.
Vogels, R., Biederman, I., Bar, M., & Lorincz, A. (2001). Inferior temporal neurons show greater sensitivity to nonaccidental than metric differences. Journal of Cognitive Neuroscience, 134, 444–453.
Witkin, A. P., & Tenenbaum, J. M. (1983). On the role of structure in vision. In J. Beck, B. Hope, & A. Rosenfeld (Eds.), Human and machine vision (pp. 481–543). Orlando, FL: Academic Press.
Ware, C. (1995). Dynamic stereo displays. Proceedings of the SIGCHI conference on human factors in computing systems (pp. 310–316).
Wright, R. D., & Ward, L. M. (2008). Orienting of attention. Oxford: Oxford University Press.
Wolfe, J. M. (2000). Attention is fast but volition is slow. Nature, 406, 691.
Wolfe, J. M., & Friedman-Hill, S. R. (1992). The role of symmetry in visual search. Psychological Science, 3(3), 194–198.
Yonas, A., & Arteberry, M. E. (1994). Infants perceive spatial structure specified by line drawings. Perception, 23, 1427–1435.
Yonas, A., Cleaves, W. T., & Pettersen, L. (1978). Development of sensitivity to pictorial depth. Science, 200, 77–79.
Young, A. W., & Deregowski, J. (1981). Learning to see the impossible. Perception, 10, 91–105.
Zwicky, A. M., & Sadock, J. M. (1975). Ambiguity tests and how to fail them. In L. Kimball (Ed.), Syntax and semantics (Vol. 4, pp. 1–36). New York: Academic Press.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Koralus, P. Can visual cognitive neuroscience learn anything from the philosophy of language? Ambiguity and the topology of neural network models of multistable perception. Synthese 193, 1409–1432 (2016). https://doi.org/10.1007/s11229-014-0518-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11229-014-0518-y