Abstract
We investigate certain Brouwer-Zadeh lattices that serve as abstract counterparts of lattices of effects in Hilbert spaces under the spectral ordering. These algebras, called PBZ*-lattices, can also be seen as generalisations of orthomodular lattices and are remarkable for the collapse of three notions of “sharpness” that are distinct in general Brouwer-Zadeh lattices. We investigate the structure theory of PBZ*-lattices and their reducts; in particular, we prove some embedding results for PBZ*-lattices and provide an initial description of the lattice of PBZ*-varieties.
Similar content being viewed by others
References
Blok W. J., Raftery J. G.: Assertionally equivalent quasivarieties. International Journal of Algebra and Computation 18(4), 589–681 (2008)
Blyth T. S.: Lattices and Ordered Algebraic Structures. Springer, Berlin (2005)
Blyth T. S., Janowitz M. F.: Residuation Theory. Pergamon Press, Oxford (1972)
Bruns G.: Varieties of modular ortholattices. Houston Journal of Mathematics 9, 1–7 (1983)
Bruns G., Harding J. et al.: Algebraic aspects of orthomodular lattices. In: Coecke, B. (eds) Current Research in Operational Quantum Logic., pp. 37–65. Springer, Berlin (2000)
Bruns G., Kalmbach G.: Varieties of orthomodular lattices II. Canadian Journal of Mathematics 24(2), 328–337 (1972)
Cattaneo G., Dalla Chiara M. L., Giuntini R.: Some algebraic structures for many–valued logics. Tatra Mountains Mathematical Publications 15, 173–196 (1998)
Cattaneo G., Giuntini R.: Some results on BZ structures from Hilbertian unsharp quantum mechanics. Foundations of Physics 25, 1147–1183 (1995)
Cattaneo G., Giuntini R., Pilla R.: BZMVdM and Stonian MV algebras (applications to fuzzy sets and rough approximations). Fuzzy Sets and Systems 108, 201–222 (1999)
Cattaneo G., Gudder S.: Algebraic structures arising in axiomatic unsharp quantum physics. Foundations of Physics 29, 1607–1637 (1999)
Cattaneo G., Hamhalter J.: De Morgan property for effect algebras of von Neumann algebras. Letters in Mathematical Physics 59(3), 243–252 (2002)
Cattaneo, G., and G. Marino, Brouwer-Zadeh posets and fuzzy set theory, in A. Di Nola, A. G. S. Ventre (eds.), Proceedings of Mathematics of Fuzzy Systems, Napoli, 1984.
Chajda I., Gil Férez J., Giuntini R., Kolarik M., Ledda A., Paoli F.: On some properties of directoids. Soft Computing 9(4), 955–964 (2015)
Chajda I., Länger H.: Horizontal sums of bounded lattices. Mathematica Pannonica 20(1), 1–5 (2009)
Chajda, I., and H. Länger, H., Directoids. An Algebraic Approach to Ordered Sets, Heldermann Verlag, Lemgo, 2011.
Chajda, I., and H. Länger, Bounded lattices with an antitone involution the complemented elements of which form a sublattice, draft.
Dalla Chiara M. L., Giuntini R., Greechie R. J.: Reasoning in Quantum Theory. Kluwer, Dordrecht (2004)
Dixmier J.: Von Neumann Algebras. North Holland, Amsterdam (1981)
Dvurečenskij A.: Gleason’s Theorem and Its Applications. Kluwer, Dordrecht-Boston-London (1993)
Font J. M.: An abstract algebraic logic view of some multiple-valued logics. In: Fitting, M., Orlowska, E. (eds) Beyond Two: Theory and Applications of Multiple-Valued Logic, pp. 25–58. Physica-Verlag, Heidelberg (2003)
Font J.M.: Taking degrees of truth seriously. Studia Logica 91(3), 383–406 (2009)
Font J.M., Jansana R., Pigozzi D.: A survey of abstract algebraic logic. Studia Logica 74, 13–97 (2003)
Foulis D.J., Bennett M.K.: Effect algebras and unsharp quantum logics. Foundations of Physics 24, 1325–1346 (1994)
Giuntini R.: Quantum MV algebras. Studia Logica 56, 393–417 (1996)
Gleason A.M.: Measures on the closed subspaces of a Hilbert space. Journal of Mathematics and Mechanics 6, 885–893 (1957)
Greechie R.J.: On the structure of orthomodular lattices satisfying the chain condition. Journal of Combinatorial Theory 4(3), 210–218 (1968)
Greechie, R. J., A non-standard quantum logic with a strong set of states, in E. Beltrametti and B. van Fraassen (eds.), Current Issues in Quantum Logic, Plenum, New York, 1981, pp. 375–380.
de Groote, H. F., On a canonical lattice structure on the effect algebra of a von Neumann algebra, 2005. arXiv:math/0410018v2.
Gumm H. P., Ursini A.: Ideals in universal algebra. Algebra Universalis 19, 45–54 (1984)
Hamhalter J.: Spectral order of operators and range projections. Journal of Mathematical Analysis and Applications 331, 1122–1134 (2007)
Harzheim E.: Ordered Sets. Springer, Berlin (2005)
Jansana R.: Selfextensional logics with a conjunction. Studia Logica 84, 63–104 (2006)
Kalman J.A.: Lattices with involution. Transactions of the American Mathematical Society 87, 485–491 (1958)
Kalmbach G.: Orthomodular Lattices. Academic Press, New York (1983)
Kozen, D., On Kleene algebras and closed semirings, in Mathematical Foundations of Computer Science 1990, Lecture Notes in Computer Science, vol. 452, Springer, Berlin, 1990, pp. 26–47.
Kreyszig E.: Introductory Functional Analysis with Applications. Wiley, New York (1978)
Manzonetto, G., and A. Salibra, From λ-calculus to universal algebra and back, in MFCS’08, vol. 5162 of LNCS, 2008, pp. 479–490.
Olson M.P.: The self-adjoint operators of a von Neumann algebra form a conditionally complete lattice. Proceedings of the American Mathematical Society 28, 537–544 (1971)
Paoli F., Spinks M., Veroff R.: Abelian logic and the logics of pointed lattice-ordered varieties. Logica Universalis 2(2), 209–233 (2008)
Roddy M.: Varieties of modular ortholattices. Order 3(4), 405–426 (1987)
Salibra A., Ledda A., Paoli F., Kowalski T.: Boolean-like algebras. Algebra Universalis 69(2), 113–138 (2013)
Stroock D.W.: A Concise Introduction to the Theory of Integration 3rd ed. Birkhäuser, Basel (1998)
Ursini A.: On subtractive varieties I. Algebra Universalis 31, 204–222 (1994)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Giuntini, R., Ledda, A. & Paoli, F. A New View of Effects in a Hilbert Space. Stud Logica 104, 1145–1177 (2016). https://doi.org/10.1007/s11225-016-9670-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11225-016-9670-3