A Preliminary Study of MV-Algebras with Two Quantifiers Which Commute | Studia Logica
Skip to main content

A Preliminary Study of MV-Algebras with Two Quantifiers Which Commute

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In this paper we investigate the class of MV-algebras equipped with two quantifiers which commute as a natural generalization of diagonal-free two-dimensional cylindric algebras (see Henkin et al., in Cylindric algebras, 1985). In the 40s, Tarski first introduced cylindric algebras in order to provide an algebraic apparatus for the study of classical predicate calculus. The diagonal–free two-dimensional cylindric algebras are special cylindric algebras. The treatment here of MV-algebras is done in terms of implication and negation. This allows us to simplify some results due to Di Nola and Grigolia (Ann Pure Appl Logic 128(1-3):125–139, 2004) related to the characterization of a quantifier in terms of some special sub-algebra associated to it. On the other hand, we present a topological duality for this class of algebras and we apply it to characterize the congruences of one algebra via certain closed sets. Finally, we study the subvariety of this class generated by a chain of length n + 1 (nω). We prove that the subvariety is semisimple and we characterize their simple algebras. Using a special functional algebra, we determine all the simple finite algebras of this subvariety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balbes, R., and P. Dwinger, Distributive Lattices, University of Missouri Press, 1974.

  2. Belluce L. P., Grigolia R., Lettieri A.: Representations of monadic MV-algebras. Studia Logica 81(1), 123–144 (2005)

    Article  Google Scholar 

  3. Bezhanishvili N.: Varieties of two-dimensional cylindric algebras. Part I: Diagonal-free case, Algebra Universalis 48(1), 11–42 (2002)

    Article  Google Scholar 

  4. Boicescu, V., A. Filipoiu, G. Georgescu, and S. Rudeanu, Łukasiewicz–Moisil Algebras, Annals of Discrete Mathematics 49, North-Holland, 1991.

  5. Chang C. C.: Algebraic analysis of many valued logics. Transactions of American Mathematical Society 88, 476–490 (1958)

    Article  Google Scholar 

  6. Cignoli R.: Quantifiers on distributive lattices. Discrete Mathematics 96, 183–197 (1991)

    Article  Google Scholar 

  7. Cignoli, R., I. D’Ottaviano, and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Trends in Logic Studia Logica Library, vol. 7, Kluwer, Dordrecht, x + 231 pp., 2000.

  8. Cornish W. H., Fowler P. R.: Coproduts of De Morgan algebras. Bulletin of the Australian Mathematical Society 16, 1–13 (1977)

    Article  Google Scholar 

  9. Diego, A., and R. Panzone, On measurable subalgebras associated to commuting conditional expectation operators. II, Revista de la Unión Matemática Argentina 24:1–35, 1968/1969.

  10. Di Nola A., Grigolia R.: On monadic MV-algebras. Annals of Pure and Applied Logic 128(1-3), 125–139 (2004)

    Article  Google Scholar 

  11. Figallo A. V., Pascual I., Ziliani A.: Monadic distributive lattices. Logic Journal Of The IGPL 15(5-6), 535–551 (2007)

    Article  Google Scholar 

  12. Figallo M.: Finite diagonal-free two-dimensional cylindric algebras. Logic Journal Of The IGPL 12(6), 509–523 (2004)

    Article  Google Scholar 

  13. Font J. M., Rodriguez A. J., Torrens A.: Wajsberg algebras. Stochastica 8(1), 5–31 (1984)

    Google Scholar 

  14. Grigolia, R., Algebric analysis of Łukasiewicz–Tarski’s n-valued logic systems, in R. Wójciki, G. Malinowski (eds.), Selected Papers on Łukasiewicz Sentencial Calculi, Ossolineum, Wroclaw, 1977, pp. 81–92.

  15. Halmos P. R.: Algebraic Logic. AMS Chelsea Publishing Company, New York (1962)

    Google Scholar 

  16. Henkin, H., D. Monk, and A. Tarski, Cylindric Algebras, Parts I & II, North-Holland, 1971 & 1985.

  17. Iorgulescu A.: Connections between MV n -algebras and n-valued Lukasiewicz-Moisil algebras II. Discrete Mathematics 202, 113–134 (1999)

    Article  Google Scholar 

  18. Komori, Y., The separation theorems of the \({\aleph_0}\)-valued Łukasiewicz propositional logic, Reports of the Faculty of Sciences, Shizouka University 12:1–5, 1978.

  19. Lattanzi, M., (n+1)-bounded Wajsberg algebras with additional operations (Spanish), Ph.D. Thesis, Universidad Nacional del Sur, 2000.

  20. Lattanzi M.: Wajsberg algebras with a U-operator. Journal of Multiple-Valued Logic and Soft Computing 10(4), 315–338 (2004)

    Google Scholar 

  21. Lattanzi, M., and A. Petrovich, A duality for monadic (n+1)-valued MV-algebras, in Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish), 2008, pp. 107–117.

  22. Martinez G.: The Priestley Duality for Wajsberg algebras. Studia Logica 49(1), 31–46 (1990)

    Article  Google Scholar 

  23. Mundici D.: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. Journal of Functional Analysis 65(1), 15–63 (1986)

    Article  Google Scholar 

  24. Rodriguez A., Torrens A., Verdú V.: Łukasiewicz logic and Wajsberg algebras. Bulletin of the Section of Logic University of Lodz 19(2), 51–55 (1990)

    Google Scholar 

  25. Rutledge, J. D., A preliminary investigation of the infinitely many-valued predicate calculus, Ph.D. Thesis, Cornell University, 1959.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Figallo Orellano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orellano, A.F. A Preliminary Study of MV-Algebras with Two Quantifiers Which Commute. Stud Logica 104, 931–956 (2016). https://doi.org/10.1007/s11225-016-9663-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11225-016-9663-2

Keywords

Mathematics Subject Classification