Asymmetry models for square contingency tables: exact tests via algebraic statistics | Statistics and Computing Skip to main content
Log in

Asymmetry models for square contingency tables: exact tests via algebraic statistics

  • Published:
Statistics and Computing Aims and scope Submit manuscript

Abstract

Square contingency tables with the same row and column classification occur frequently in a wide range of statistical applications, e.g. whenever the members of a matched pair are classified on the same scale, which is usually ordinal. Such tables are analysed by choosing an appropriate loglinear model. We focus on the models of symmetry, triangular, diagonal and ordinal quasi symmetry. The fit of a specific model is tested by the chi-squared test or the likelihood-ratio test, where p-values are calculated from the asymptotic chi-square distribution of the test statistic or, if this seems unjustified, from the exact conditional distribution. Since the calculation of exact p-values is often not feasible, we propose alternatives based on algebraic statistics combined with MCMC methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Agresti, A.: A simple diagonals-parameters symmetry and quasi-symmetry model. Stat. Probab. Lett. 1, 313–316 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  • Agresti, A.: Categorical Data Analysis, 2nd edn. Wiley, New York (2002)

    MATH  Google Scholar 

  • Aoki, S., Takemura, A.: Markov chain Monte Carlo exact tests for incomplete two-way contingency tables. J. Stat. Comput. Simul. 75, 787–812 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Bishop, Y., Fienberg, S., Holland, P.: Discrete Multivariate Analysis. MIT Press, Cambridge (1975)

    MATH  Google Scholar 

  • Breslow, N.: Covariance adjustment of relative-risk estimates in matched studies. Biometrics 38, 661–672 (1982)

    Article  Google Scholar 

  • Caussinus, H.: Contribution à l’analyse statistique de tableaux de corrélation. Ann. Fac. Sci. Univ. Toulouse 29, 77–182 (1965)

    MathSciNet  Google Scholar 

  • Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings-algorithm. Am. Stat. 49, 327–335 (1995)

    Article  Google Scholar 

  • Cochran, W.G.: Some methods for strengthening the common χ 2 tests. Biometrics 10, 417–451 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  • CoCoATeam: CoCoA: a system for doing computations in commutative algebra (2000). Available at http://cocoa.dima.unige.it

  • Conover, W.J.: Some reasons for not using the Yates continuity correction on 2×2 contingency tables. J. Am. Stat. Assoc. 69, 374–382 (1974)

    Article  Google Scholar 

  • Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer, New York (1997)

    Google Scholar 

  • Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26, 363–397 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Goodman, L.A.: Multiplicative models for square contingency tables with ordered categories. Biometrika 66, 413–418 (1979)

    Article  Google Scholar 

  • Goodman, L.A.: The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models and asymmetry models for contingency tables with or without missing entries. Ann. Stat. 13, 10–69 (1985)

    Article  MATH  Google Scholar 

  • Kateri, M., Agresti, A.: A class of ordinal quasi symmetry models for square contingency tables. Stat. Probab. Lett. 77, 598–603 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Krampe, A., Kuhnt, S.: Bowker’s test for symmetry and modifications within the algebraic framework. Comput. Stat. Data Anal. 51, 4124–4142 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Krampe, A., Kuhnt, S.: Model selection for contingency tables with algebraic statistics. In: Gibilisco, P., Riccomagno, E., Rogatin, M.-P., Wynn, H.P. (eds.) Algebraic and Geometric Methods in Statistics. Cambridge University Press, Cambridge (2009)

  • Lapp, K., Molenberghs, G., Lesaffre, E.: Models for the association between ordinal variables. Comput. Stat. Data Anal. 28, 387–411 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  • Lehmann, E.L.: Testing Statistical Hypotheses, 2nd edn. Wiley, New York (1986)

    MATH  Google Scholar 

  • McCullagh, P.: A class of parametric models for the analysis of square contingency tables with ordered categories. Biometrika 65, 413–418 (1978)

    Article  MATH  Google Scholar 

  • Pistone, G., Riccomagno, E., Wynn, H.P.: Algebraic Statistics. CRC Press, Boca Raton (2001)

  • Rapallo, F.: Algebraic Markov bases and MCMC for two-way contingency tables. Scand. J. Stat. 30, 385–397 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Rapallo, F.: Algebraic exact inference for rater agreement models. Stat. Methods Appl. 14, 45–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  • Rapallo, F.: Markov bases and structural zeros. J. Symb. Comput. 41, 164–172 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  • Sørensen, D., Gianola, D.: Likelihood, Bayesian, and MCMC Methods in Qualitative Genetics. Springer, New York (2002)

    Google Scholar 

  • Witting, H.: Statistik. Teubner, Stuttgart (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Krampe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krampe, A., Kateri, M. & Kuhnt, S. Asymmetry models for square contingency tables: exact tests via algebraic statistics. Stat Comput 21, 55–67 (2011). https://doi.org/10.1007/s11222-009-9146-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11222-009-9146-7

Keywords

Navigation