Martingales and buffer overflow for the symmetric shortest queue model | Queueing Systems Skip to main content
Log in

Martingales and buffer overflow for the symmetric shortest queue model

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

A variant of the standard symmetric system of two parallel queues under the join-the-shortest-queue policy is introduced. Here, the shortest queue has service rate \(\mu _1\), while the longest queue has rate \(\mu _2\), where \(\mu _1 + \mu _2 = 1\). In the case of equality, both queues are served at rate 1 / 2. Each queue has capacity K, which may be finite or infinite, and the global Poisson arrival rate is \(\rho \). Couplings show that, as \(\mu _2\) varies, the model is totally ordered, in terms of both total number N(t) of customers in the system and longest queue length. The two extreme cases \(\mu _2= 0\) and \(\mu _2= 1\) then provide simple stochastic bounds for N(t) for arbitrary \(\mu _2\). The ordering partially extends to the enlarged model in which, whenever the shortest queue is empty, the idle server at that queue helps—or on the contrary disturbs—the other server. The previous bounds remain valid. In the extended setup, different martingales are next built from the infinite capacity process. Those lead to simple explicit formulations of the means and Laplace transforms of the hitting time of saturation, for the process with finite K started from any initial state. Asymptotics are then derived, as K gets large. Using one particular mean time, the stationary blocking probability is explicitly obtained, extending the result by Dester et al. regarding the standard symmetric model. Finally, the joint distribution of the time and state of the system at the first queue-length equality is expressed as a function of the inverse of a simple explicit matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adan, I., Wessels, J., Zijm, W.H.M.: Analysis of the symmetric shortest queue problem. Commun. Stat. Stoch. Models 6(4), 691–713 (1990)

    Article  Google Scholar 

  2. Adan, I., Wessels, J., Zijm, W.H.M.: Analysis of the asymmetric shortest queue problem. Queueing Syst. 8(1), 1–58 (1991)

    Article  Google Scholar 

  3. Adan, I., Wessels, J.: Analysis of the asymmetric shortest queue problem with threshold jockeying. Stoch. Models 7(4), 615–627 (1991)

    Article  Google Scholar 

  4. Adan, I., Wessels, J., Zijm, W.H.M.: A compensation approach for two-dimensional Markov processes. Adv. Appl. Probab. 25(04), 783–817 (1993)

    Article  Google Scholar 

  5. Adan, I., van Houtum, G.J., van der Wal, J.: Upper and lower bounds for the waiting time in the symmetric shortest queue system. Ann. Oper. Res. 48(2), 197–217 (1994)

    Article  Google Scholar 

  6. Asmussen, S.: Applied Probability and Queues. Applications of Mathematics, Stochastic Modelling and Applied Probability, vol. 51. Springer, Berlin (2003)

    Google Scholar 

  7. Baccelli, F.: Exponential martingales and Wald’s formulas for two-queue networks. J. Appl. Probab. 23(3), 812–819 (1986)

    Article  Google Scholar 

  8. Blanc, J.P.: The power-series algorithm applied to the shortest-queue model. Oper. Res. 40(1), 157–167 (1992)

    Article  Google Scholar 

  9. Bramson, M.: Stability of join the shortest queue networks. Ann. Appl. Probab. 21(4), 1568–1625 (2011)

    Article  Google Scholar 

  10. Braverman, A.: Steady-state analysis of the join the shortest queue model in the Halfin-Whitt regime. arXiv preprint arXiv:1801.05121 (2018)

  11. Cohen, J.W.: A two-queue, one-server model with priority for the longer queue. Queueing Syst. 2, 261–283 (1987)

    Article  Google Scholar 

  12. Cohen, J.W.: On entrance times of a homogeneous \(N\)-dimensional random walk: an identity. J. Appl. Probab. 25(1), 321–333 (1988)

    Article  Google Scholar 

  13. Cohen, J.W.: Two-dimensional nearest-neighbour queueing models, a review and an example. In: Baccelli, F., Jean-Marie, A., Mitrani, I. (eds.) Quantitative Methods in Parallel Systems, pp. 141–152. Springer, Berlin (1995)

    Chapter  Google Scholar 

  14. Cohen, J.W.: Analysis of the asymmetrical shortest two-server queueing model. Int. J. Stoch. Anal. 11(2), 115–162 (1998)

    Google Scholar 

  15. Conolly, B.W.: The autostrada queueing problem. J. Appl. Probab. 21(2), 394–403 (1984)

    Article  Google Scholar 

  16. Dai, J.G., Hasenbein, J.J., Kim, B.: Stability of join-the-shortest-queue networks. Queueing Syst. 57, 129–145 (2007)

    Article  Google Scholar 

  17. Dester, P.S., Fricker, C., Tibi, D.: Stationary analysis of the shortest queue problem. Queueing Syst. 87, 211–243 (2017)

    Article  Google Scholar 

  18. Eschenfeldt, P., Gamarnik, D.: Join the shortest queue with many servers. The heavy traffic asymptotics. Math. Oper. Res. 43(3), 867–886 (2018)

    Article  Google Scholar 

  19. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley Series in Probability and Statistics. Wiley, London (1985)

    Google Scholar 

  20. Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann–Hilbert problem. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 47(3), 325–351 (1979)

    Article  Google Scholar 

  21. Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random Walks in the Quarter Plane. Probability Theory and Stochastic Modelling, vol. 40. Springer, Berlin (2017)

    Book  Google Scholar 

  22. Flatto, L.: The longer queue model. Probab. Eng. Inf. Sci. 3(04), 537–559 (1989)

    Article  Google Scholar 

  23. Flatto, L., McKean, H.P.: Two queues in parallel. Commun. Pure Appl. Math. 30(2), 255–263 (1977)

    Article  Google Scholar 

  24. Foley, R.D., McDonald, D.R.: Join the shortest queue: stability and exact asymptotics. Ann. Appl. Probab. 11(3), 569–607 (2001)

    Google Scholar 

  25. Foss, S., Chernova, N.: On the stability of a partially accessible multi-station queue with state-dependent routing. Queueing Syst. 29, 55–73 (1998)

    Article  Google Scholar 

  26. Gertsbakh, I.: The shorter queue problem: a numerical study using the matrix-geometric solution. Eur. J. Oper. Res. 15, 374–381 (1984)

    Article  Google Scholar 

  27. Guillemin, F., Simonian, A.: Stationary analysis of the shortest queue first service policy. Queueing Syst. 77(4), 393–426 (2014)

    Article  Google Scholar 

  28. Haight, F.: Two queues in parallel. Biometrika 45(3–4), 401–410 (1958)

    Article  Google Scholar 

  29. Halfin, S.: The shortest queue problem. J. Appl. Probab. 22(4), 865–878 (1985)

    Article  Google Scholar 

  30. Kennedy, D.P.: Some martingales related to cumulative sum tests and single-server queues. Stoch. Process. Appl. 4, 261–269 (1976)

    Article  Google Scholar 

  31. Kingman, J.: Two similar queues in parallel. Ann. Math. Stat. 32(4), 1314–1323 (1961)

    Article  Google Scholar 

  32. Knessl, C., Yao, H.: On the finite capacity shortest queue problem. Prog. Appl. Math. 2(1), 01–34 (2011)

    Article  Google Scholar 

  33. Knessl, C., Yao, H.: On the nonsymmetric longer queue model: Joint distribution, asymptotic properties, and heavy traffic limits. Adv. Oper. Res. (2013). https://doi.org/10.1155/2013/680539

  34. Kurkova, I.A.: A load-balanced network with two servers. Queueing Syst. 37, 379–389 (2001)

    Article  Google Scholar 

  35. Kurkova, I.A., Suhov, Y.M.: Malyshev’s theory and JS-queues. Asymptotics of stationary probabilities. Ann. Appl. Probab. 13(4), 1313–1354 (2003)

    Article  Google Scholar 

  36. Li, H., Miyazawa, M., Zhao, Y.Q.: Geometric decay in a QBD process with countable background states with applications to a join-the-shortest-queue model. Stoch. Models 23(3), 413–438 (2007)

    Article  Google Scholar 

  37. Mitzenmacher, M.: On the analysis of randomized load balancing schemes. In: Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and Architectures, ACM, pp. 292–301 (1997)

  38. Palmovski, Z., Rolski, T.: A technique for exponential change of measure for Markov processes. Bernoulli 8, 767–785 (2002)

    Google Scholar 

  39. Puhalskii, A.A., Vladimirov, A.A.: A large deviation principle for join the shortest queue. Math. Oper. Res. 32(3), 700–710 (2007)

    Article  Google Scholar 

  40. Rao, B.M., Posner, M.J.M.: Algorithmic and approximation analyses of the shorter queue model. Naval Res. Logist. (NRL) 34(3), 381–398 (1987)

    Article  Google Scholar 

  41. Ridder, A., Schwartz, A.: Large deviations without principle: join the shortest queue. Math. Methods Oper. Res. 62(3), 467–483 (2005)

    Article  Google Scholar 

  42. Robert, P.: Stochastic Networks and Queues. Applications of Mathematics, Stochastic Modelling and Applied Probability, vol. 52. Springer, Berlin (2003)

    Google Scholar 

  43. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales: Foundations, vol. 1. Wiley, Chichester (1994)

    Google Scholar 

  44. Tarabia, A.M.K.: Analysis of two queues in parallel with jockeying and restricted capacities. Appl. Math. Model. 32(5), 802–810 (2008)

    Article  Google Scholar 

  45. Turner, S.R.E.: A join the shorter queue model in heavy traffic. J. Appl. Probab. 37(01), 212–223 (2000)

    Article  Google Scholar 

  46. Turner, S.R.E.: Large deviations for join the shorter queue. Fields Inst. Commun. 28, 95–108 (2000)

    Google Scholar 

  47. Vvedenskaya, N., Dobrushin, R., Karpelevich, F.: Queueing system with selection of the shortest of two queues: an asymptotic approach. Problemy Peredachi Informatsii 32(1), 20–34 (1996)

    Google Scholar 

  48. Weber, R.R.: On the optimal assignment of customers to parallel servers. J. Appl. Probab. 15(02), 406–413 (1978)

    Article  Google Scholar 

  49. Whitt, W.: Deciding which queue to join: some counterexamples. Oper. Res. 34(1), 55–62 (1986)

    Article  Google Scholar 

  50. Winston, W.: Optimality of the shortest line discipline. J. Appl. Probab. 14(01), 181–189 (1977)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Tibi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tibi, D. Martingales and buffer overflow for the symmetric shortest queue model. Queueing Syst 93, 153–190 (2019). https://doi.org/10.1007/s11134-019-09628-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-019-09628-9

Keywords

Mathematics Subject Classification

Navigation