Dial-Up Internet Access: A Two-Provider Cost Model | Queueing Systems Skip to main content
Log in

Dial-Up Internet Access: A Two-Provider Cost Model

  • Published:
Queueing Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We present a cost model for splitting Internet dial-up traffic (which varies by time-of-day) between two large modem banks. One of the modem banks charges by the hour, the other charges for the peak number-in-system during the day. To study if the possible savings are enough to make the effort worthwhile, we formulate a clairvoyant (“perfect information”) Integer Program that is equivalent to a network flow problem. This leads us to use a ceiling policy. In the stochastic control case, we use a Modified Offered Load (MOL) approximation to explore the properties of the system, and develop a square-root-type rule to set the ceiling in the homogeneous case. We also use simulation to determine an optimal ceiling when we cannot route individual calls precisely. We propose approximations that may be computed for any call duration distribution, and compare their answers to exact differential-equation procedures for Exponential call durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms, and Applications, (Prentice-Hall, 1993).

  2. S.G. Eick, W.A. Massey and W. Whitt, M t /G/∞ queues with sinusoidal arrival rates, Management Science 39(2) (1993) 241–252.

    Google Scholar 

  3. S.G. Eick, W.A. Massey and W. Whitt, The physics of the M t /G/∞ queue, Operations Research 41(4) (1993) 731–742.

    Google Scholar 

  4. L.V. Green, P.J. Kolesar and A. Svoronos, Some effects of nonstationarity on multiserver Markovian queueing systems, Operations Research 39(3) (1991) 502–511.

    Google Scholar 

  5. P.J. Kolesar and L.V. Green, Insights on service system design from a normal approximation to Erlang's formula, Production and Operations Management 7(3) (1998) 282–293.

    Google Scholar 

  6. W.A. Massey and W. Whitt, An analysis of the modified offered-load approximation for the nonstationary Erlang loss model, Annals of Applied Probability 4(4) (1994) 1145–1160.

    Google Scholar 

  7. C. Palm, Intensity Variations in Telephone Traffic (translation of 1943 article in Ericcson Technics, 44, 1-189) (North-Holland, Amsterdam, 1988).

    Google Scholar 

  8. S.M. Ross, Average delay in queues with non-stationary Poisson arrivals, J. Appl. Prob. 15(3) (1978) 602–609.

    Google Scholar 

  9. S.M. Ross, Introduction to Probability Models, 8th edn, (Academic Press, 2003).

  10. R.A. Vitale, Some comparisons for Gaussian processes, Proceedings of the American Math. Society 128(10) (2000) 3043–3046.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Ross.

Additional information

AMS subject classification: 60K25, 90B18, 68M20, 90B22, 60K30

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, A.M., Shanthikumar, J.G. Dial-Up Internet Access: A Two-Provider Cost Model. Queueing Syst 51, 5–27 (2005). https://doi.org/10.1007/s11134-005-1671-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-005-1671-2

Keywords

Navigation