Compression and reduction of $$N*1$$ states by unitary matrices | Quantum Information Processing Skip to main content
Log in

Compression and reduction of \(N*1\) states by unitary matrices

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In recent experiments, the compression from qutrit to qubit is realized by the autoencoder. Inspired by the idea of dimensionality reduction, we apply the rotation transformation to compress the states. Starting from Lie algebra, we construct a 3*3 unitary matrix acting on 3*1 state and realize the rotation transformation of the states and then achieve compression of 3*1 state. Each rotation of a state is a compression, and each compression-only needs to adjust two parameters. According to the compression of 3*1 and 4*1 states by unitary matrices, we further discuss the compression law of N*1 states by unitary matrices. In the process of compression, we can adjust the form of the unitary matrix according to the system condition to change the compression position. In this paper, we focus on the compression law along the diagonal from top to bottom. We redesigned the autoencoder and added the waveplate combination to reduce the parameters without affecting the results and achieve the purpose of state compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yamamura, M., Kuriyama, A., Kunihiro, T.: Schwinger-type boson realization for three sub-algebras of the su(4) algebra: the so(5), the so(4) and the su(2)\(\otimes \)su(2) algebra. Progress Theoret. Phys. 104, 385–400 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  2. Podolsky, D., Altman, E., Rostunov, T., Demler, E.: SO(4) theory of antiferromagnetism and superconductivity in bechgaard salts. Phys. Rev. Lett. 93, 246406 (2004)

    Article  ADS  Google Scholar 

  3. Martínez-Y-Romero, R.P., Núñez-Yépez, H.N., Salas-Brito, A.L.: Algebraic approach to radial ladder operators in the hydrogen atom. Int. J. Quantum Chem. 107, 1608–1613 (2007)

    Article  ADS  Google Scholar 

  4. Talpaert, Y.: Mechanics in Differential Geometry. De Gruyter, Berlin, Boston (2006)

    Book  Google Scholar 

  5. Roy, S.G., Sarkar, N.K., Bhattacharjee, R.: Determination of energy bands in solids using unitary representation of Su(1,1) lie algebra. Solid State Physics. 1447, 797–798 (2012)

    ADS  Google Scholar 

  6. Sattinger, D.H., Weaver, O.L.: Lie Group and Algebras with Applications to physics, Geometry, and Mechanics. Springer-Verlag, Berlin Heidelberg GmbH (1986)

    Book  Google Scholar 

  7. Jen, H.H., Yip, S.-K.: Spin-incoherent luttinger liquid of one-dimensional SU(\(\kappa \)) fermions. Phys. Rev. A 98, 013623 (2018)

    Article  ADS  Google Scholar 

  8. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller, G.L.: Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, pp. 212–219. ACM, New York, USA (1996)

  9. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th, Anniversary Cambridge University Press, Cambridge, UK (2010)

    Book  Google Scholar 

  10. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 5, 222–229 (2011)

    Article  ADS  Google Scholar 

  11. Slussarenko, S., Weston, M.M., Chrzanowski, H.M., Shalm, L.K., Verma, V.B., Nam, S.W., Pryde, G.J.: Unconditional violation of the shot-noise limit in photonic quantum metrology. Nat. Photonics 11, 700–703 (2017)

    Article  ADS  Google Scholar 

  12. Lohani, S., Kirby, B.T., Brodsky, M., Danaci, O., Glasser, R.T.: Machine learning assisted quantum state estimation. Mach. Learn.: Sci. Technol. 1(3), 035007 (2020)

    Article  Google Scholar 

  13. Bernien, H., Schwartz, S., Keesling, A., Levine, H., Omran, A., Pichler, H., Choi, S., Zibrov, A.S., Endres, M., Greiner, M., Vuletic, V., Lukin, M.D.: Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 579–584 (2017)

    Article  ADS  Google Scholar 

  14. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  15. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Brink, M., Chow, J.M., Gambetta, J.M.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 242–246 (2017)

    Article  ADS  Google Scholar 

  16. Zhang, J., Pagano, G., Hess, P.W., Kyprianidis, A., Becker, P., Kaplan, H., Gorshkov, A.V., Gong, Z.X., Monroe, C.: Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator. Nature 551, 601–604 (2017)

    Article  ADS  Google Scholar 

  17. Serre, J.P.: Lie Algebras and Lie Groups 1964 Lectures given at Harvard University. Springer-Verlag, Berlin Heidelberg (1992)

    MATH  Google Scholar 

  18. Carleo, G., Nomura, Y., Imada, M.: Constructing exact representations of quantum many-body systems with deep neural networks. Nat. Commun. 9, 1–11 (2018)

    Article  Google Scholar 

  19. Hara, S., Ono, T., Okamoto, R., Washio, T., Takeuchi, S.: Anomaly detection in reconstructed quantum states using a machine-learning technique. Phys. Rev. A 89, 022104 (2014)

    Article  ADS  Google Scholar 

  20. Carleo1, G., Troyer, M.: Solving the quantum many-body problem with artificial neural networks. Science. 335, 602–606 (2017)

  21. Pepper, A., Tischler, N., Pryde, G.J.: Experimental realization of a quantum autoencoder: the compression of qutrits via machine learning. Phys. Rev. Lett. 122, 060501 (2019)

    Article  ADS  Google Scholar 

  22. Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Universal unitary gate for single-photon two-qubit states. Phys. Rev. A 63, 032303 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF of China (Grant Nos. 11647054 and 11505017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guijiao Du or Leong-Chuan Kwek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, G., Zhou, C. & Kwek, LC. Compression and reduction of \(N*1\) states by unitary matrices. Quantum Inf Process 21, 80 (2022). https://doi.org/10.1007/s11128-022-03409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03409-9

Keywords

Navigation