Automated machine learning can classify bound entangled states with tomograms | Quantum Information Processing Skip to main content

Advertisement

Log in

Automated machine learning can classify bound entangled states with tomograms

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

For quantum systems with total dimension greater than six, the positive partial transposition (PPT) criterion is necessary but not sufficient to decide the non-separability of quantum states. Here, we present an automated machine learning approach to classify random states of two qutrits as separable or entangled even when the PPT criterion fails. We successfully applied our framework using enough data to perform a complete quantum state tomography and without any direct measurement of its entanglement. In addition, we could also estimate the generalized robustness of entanglement with regression techniques and use it to validate our classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Werner state [35] is a one-parameter family from SEP to NPT without passing through PPTES.

References

  1. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

  2. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414(6866), 883 (2001)

    Article  ADS  Google Scholar 

  3. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144km. Nat. Phys. 3(7), 481–486 (2007)

    Article  Google Scholar 

  4. Vaziri, A., Weihs, G., Zeilinger, A.: Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett. 89(24), 240401 (2002)

    Article  ADS  Google Scholar 

  5. Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8(5), 75 (2006)

    Article  ADS  Google Scholar 

  6. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a bound entanglement in nature? Phys. Rev. Lett. 80(24), 5239–5242 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be activated. Phys. Rev. Lett. 82(5), 1056–1059 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385–5388 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Breuer, H.-P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97(8), 080501 (2006)

    Article  ADS  Google Scholar 

  12. Sentís, G., Eltschka, C., Siewert, J.: Quantitative bound entanglement in two-qutrit states. Phys. Rev. A 94(2), 020302 (2016)

    Article  ADS  Google Scholar 

  13. Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Superactivation of bound entanglement. Phys. Rev. Lett. 90(10), 107901 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gurvits, L.: Classical complexity and quantum entanglement. J. Comput. Syst. Sci. 69(3), 448–484 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurvits, L.: Classical deterministic complexity of edmonds’ problem and quantum entanglement. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 10–19. ACM (2003)

  16. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Gühne, O., Hyllus, P., Bruß, D., Ekert, A., Lewenstein, M., Macchiavello, C., Sanpera, A.: Detection of entanglement with few local measurements. Phys. Rev. A 66(6), 062305 (2002)

    Article  ADS  MATH  Google Scholar 

  18. Cavalcanti, D., Cunha, M.O.T.: Estimating entanglement of unknown states. Appl. Phys. Lett. 89(8), 084102 (2006)

    Article  ADS  Google Scholar 

  19. Maciel, T.O., Vianna, R.O.: Viable entanglement detection of unknown mixed states in low dimensions. Phys. Rev. A 80(3), 032325 (2009)

    Article  ADS  Google Scholar 

  20. Lima, G., Gómez, E.S., Vargas, A., Vianna, R.O., Saavedra, C.: Fast entanglement detection for unknown states of two spatial qutrits. Phys. Rev. A 82(1), 012302 (2010)

    Article  ADS  Google Scholar 

  21. Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Progress Phys. 81(7), 074001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. Kieferová, M., Wiebe, N.: Tomography and generative training with quantum boltzmann machines. Phys. Rev. A 96, 062327 (2017)

    Article  ADS  Google Scholar 

  23. Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-network quantum state tomography. Nat. Phys. 14(5), 447–450 (2018)

    Article  Google Scholar 

  24. Torlai, G., Melko, R.G.: Neural decoder for topological codes. Phys. Rev. Lett. 119, 030501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Krastanov, S., Jiang, L.: Deep neural network probabilistic decoder for stabilizer codes. Sci. Rep. 7(1), 1–7 (2017)

    Article  Google Scholar 

  26. August, M., Ni, X.: Using recurrent neural networks to optimize dynamical decoupling for quantum memory. Phys. Rev. A 95, 012335 (2017)

    Article  ADS  Google Scholar 

  27. Gao, J., Qiao, L.-F., Jiao, Z.-Q., Ma, Y.-C., Cheng-Qiu, H., Ren, R.-J., Yang, A.-L., Tang, H., Yung, M.-H., Jin, X.-M.: Experimental machine learning of quantum states. Phys. Rev. Lett. 120, 240501 (2018)

    Article  ADS  Google Scholar 

  28. Yang, M., Ren, C., Ma, Y., Xiao, Y., Xiang-Jun Ye, L.-L., Song, J.-S.X., Yung, M.-H., Li, C.-F., Guo, G.-C.: Experimental simultaneous learning of multiple nonclassical correlations. Phys. Rev. Lett. 123, 190401 (2019)

    Article  ADS  Google Scholar 

  29. Canabarro, A., Brito, S., Chaves, R.: Machine learning nonlocal correlations. Phys. Rev. Lett. 122, 200401 (2019)

    Article  ADS  Google Scholar 

  30. Sirui, L., Huang, S., Li, K., Li, J., Chen, J., Dawei, L., Ji, Z., Shen, Y., Zhou, D., Zeng, B.: Separability-entanglement classifier via machine learning. Phys. Rev. A 98, 012315 (2018)

    Article  ADS  Google Scholar 

  31. Canabarro, A., Fanchini, F.F., Malvezzi, A.L., Pereira, R., Chaves, R.: Unveiling phase transitions with machine learning. Phys. Rev. B 100, 045129 (2019)

    Article  ADS  Google Scholar 

  32. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  33. Liang, Y.-C., Masanes, L., Rosset, D.: All entangled states display some hidden nonlocality. Phys. Rev. A 86, 052115 (2012)

    Article  ADS  Google Scholar 

  34. Vértesi, T., Brunner, N.: Quantum nonlocality does not imply entanglement distillability. Phys. Rev. Lett. 108, 030403 (2012)

    Article  ADS  Google Scholar 

  35. Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  36. Steiner, M.: Generalized robustness of entanglement. Phys. Rev. A 67(5), 054305 (2003)

    Article  ADS  Google Scholar 

  37. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press (2000)

  38. Vidal, G., Tarrach, R.: Robustness of entanglement. Phys. Rev. A 59, 141–155 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  39. Le, T.T., Fu, W., Moore, J.H.: Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics (Oxford, England) 36, 250–256 (2019)

    Google Scholar 

  40. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2962–2970. Curran Associates, Inc (2015)

  41. Jin, H., Song, Q., Hu, X.: Auto-keras: An efficient neural architecture search system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1946–1956. ACM (2019)

  42. Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Urban, M., Burkart, M., Dippel, M., Lindauer, M., Hutter, F.: Towards automatically-tuned deep neural networks. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) AutoML: Methods, Sytems, Challenges, chapter 7, pp. 141–156. Springer (2018)

  43. May, R.J., Maier, H.R., Dandy, G.C.: Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw. 23(2), 283–294 (2010)

    Article  Google Scholar 

  44. Życzkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys. 52(6), 062201 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58(2), 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  46. Zyczkowski, K., Sommers, H.-J.: Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys. A Math. Gen. 36(39), 10115 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Sommers, H.-J., Życzkowski, K.: Statistical properties of random density matrices. J. Phys. A Math. Gen. 37(35), 8457 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Braunstein, S.L.: Geometry of quantum inference. Phys. Lett. A 219(3–4), 169–174 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Zyczkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34(35), 7111 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 283(1–2), 1–7 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Brandao, F.G.S.L., Vianna, R.O.: Separable multipartite mixed states: operational asymptotically necessary and sufficient conditions. Phys. Rev. Lett. 93(22), 220503 (2004)

    Article  ADS  Google Scholar 

  52. Brandão, F.G.S.L.: Quantifying entanglement with witness operators. Phys. Rev. A 72, 022310 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  53. Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: Complete family of separability criteria. Phys. Rev. A 69, 022308 (2004)

    Article  ADS  Google Scholar 

  54. Terhal, B.M.: Detecting quantum entanglement. Theoret. Comput. Sci. 287(1), 313–335 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. MATLAB. version 9.6 (R2019b). The MathWorks Inc., Natick, Massachusetts (2019)

  56. Löfberg, J.: Yalmip : A toolbox for modeling and optimization in matlab. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)

  57. Toh, K.-C., Todd, M.J., Tütüncü, R.H.: SDPT3—a matlab software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1-4):545–581 (1999)

  58. Maciej Lewenstein, B., Kraus, P.H., Cirac, J.I.: Characterization of separable states and entanglement witnesses. Phys. Rev. A 63(4), 044304 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Maciej Lewenstein, B., Kraus, J.I.C., Horodecki, P.: Optimization of entanglement witnesses. Phys. Rev. A 62(5), 052310 (2000)

    Article  ADS  Google Scholar 

  60. Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. SIAM (2001)

  61. Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley, Hoboken, 62:63 (2003)

  62. Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  63. Platt, J. Sequential minimal optimization: a fast algorithm for training support vector machines. Technical Report MSR-TR-98-14, Microsoft Inc., April (1998)

  64. Cristianini, N., Shawe-Taylor, J., et al.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press (2000)

  65. Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybernet. SMC–15(4), 580–585 (1985)

    Article  Google Scholar 

  66. Breiman, L., Friedman, J., Stone, C.J., Olshen R.A.: Classification and Regression Trees. CRC Press (1984)

  67. Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.: Xgboost: extreme gradient boosting. R package version (4–2), 1–4 (2015)

  68. Archer, K.J., Kimes, R.V.: Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52(4), 2249–2260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Anderson, D., McNeill, G.: Artificial neural networks technology. Kaman Sci. Corp. 258(6), 1–83 (1992)

    Google Scholar 

  70. Guyon, I., Sun-Hosoya, L., Boullé, M.. Escalante, H.J., Escalera, S., Liu, Z., Jajetic, D., Ray, B., Saeed, M., Sebag, M., Statnikov, A., Tu, W.-W., Viegas, E.: Analysis of the automl challenge series 2015–2018. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning: Methods. Systems, Challenges, pp. 177–219. Springer International Publishing, Cham (2019)

  71. Mehta, P., Bukov, M., Wang, C.-H., Day, A.G.R., Richardson, C., Fisher, C.K., Schwab, D.J.: A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  72. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  73. Salman, R., Kecman, V.: Regression as classification. In: Conference Proceedings—IEEE SOUTHEASTCON, pp. 1–6, 03 (2012)

  74. Aubrun, G., Szarek, S.J.: Tensor products of convex sets and the volume of separable states on \(n\) qudits. Phys. Rev. A 73, 022109 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support by Brazilian agencies CAPES, CNPq, and INCT-IQ (National Institute of Science and Technology for Quantum Information), and SeTIC-UFSC for the computational time in its cluster. AC acknowledges UFAL for a paid license for scientific cooperation at UFRN and the John Templeton Foundation via the Grant Q-CAUSAL No. 61084, the Serrapilheira Institute (Grant No. Serra-1708-15763) and CNPQ (Grant No. \(423713/2016-7\)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio B. D. Goes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goes, C.B.D., Canabarro, A., Duzzioni, E.I. et al. Automated machine learning can classify bound entangled states with tomograms. Quantum Inf Process 20, 99 (2021). https://doi.org/10.1007/s11128-021-03037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03037-9

Keywords

Navigation