Abstract
For quantum systems with total dimension greater than six, the positive partial transposition (PPT) criterion is necessary but not sufficient to decide the non-separability of quantum states. Here, we present an automated machine learning approach to classify random states of two qutrits as separable or entangled even when the PPT criterion fails. We successfully applied our framework using enough data to perform a complete quantum state tomography and without any direct measurement of its entanglement. In addition, we could also estimate the generalized robustness of entanglement with regression techniques and use it to validate our classifiers.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
Werner state [35] is a one-parameter family from SEP to NPT without passing through PPTES.
References
Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)
Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414(6866), 883 (2001)
Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144km. Nat. Phys. 3(7), 481–486 (2007)
Vaziri, A., Weihs, G., Zeilinger, A.: Experimental two-photon, three-dimensional entanglement for quantum communication. Phys. Rev. Lett. 89(24), 240401 (2002)
Gröblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8(5), 75 (2006)
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413–1415 (1996)
Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223(1–2), 1–8 (1996)
Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a bound entanglement in nature? Phys. Rev. Lett. 80(24), 5239–5242 (1998)
Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be activated. Phys. Rev. Lett. 82(5), 1056–1059 (1999)
Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82(26), 5385–5388 (1999)
Breuer, H.-P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97(8), 080501 (2006)
Sentís, G., Eltschka, C., Siewert, J.: Quantitative bound entanglement in two-qutrit states. Phys. Rev. A 94(2), 020302 (2016)
Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Superactivation of bound entanglement. Phys. Rev. Lett. 90(10), 107901 (2003)
Gurvits, L.: Classical complexity and quantum entanglement. J. Comput. Syst. Sci. 69(3), 448–484 (2004)
Gurvits, L.: Classical deterministic complexity of edmonds’ problem and quantum entanglement. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 10–19. ACM (2003)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)
Gühne, O., Hyllus, P., Bruß, D., Ekert, A., Lewenstein, M., Macchiavello, C., Sanpera, A.: Detection of entanglement with few local measurements. Phys. Rev. A 66(6), 062305 (2002)
Cavalcanti, D., Cunha, M.O.T.: Estimating entanglement of unknown states. Appl. Phys. Lett. 89(8), 084102 (2006)
Maciel, T.O., Vianna, R.O.: Viable entanglement detection of unknown mixed states in low dimensions. Phys. Rev. A 80(3), 032325 (2009)
Lima, G., Gómez, E.S., Vargas, A., Vianna, R.O., Saavedra, C.: Fast entanglement detection for unknown states of two spatial qutrits. Phys. Rev. A 82(1), 012302 (2010)
Dunjko, V., Briegel, H.J.: Machine learning & artificial intelligence in the quantum domain: a review of recent progress. Rep. Progress Phys. 81(7), 074001 (2018)
Kieferová, M., Wiebe, N.: Tomography and generative training with quantum boltzmann machines. Phys. Rev. A 96, 062327 (2017)
Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-network quantum state tomography. Nat. Phys. 14(5), 447–450 (2018)
Torlai, G., Melko, R.G.: Neural decoder for topological codes. Phys. Rev. Lett. 119, 030501 (2017)
Krastanov, S., Jiang, L.: Deep neural network probabilistic decoder for stabilizer codes. Sci. Rep. 7(1), 1–7 (2017)
August, M., Ni, X.: Using recurrent neural networks to optimize dynamical decoupling for quantum memory. Phys. Rev. A 95, 012335 (2017)
Gao, J., Qiao, L.-F., Jiao, Z.-Q., Ma, Y.-C., Cheng-Qiu, H., Ren, R.-J., Yang, A.-L., Tang, H., Yung, M.-H., Jin, X.-M.: Experimental machine learning of quantum states. Phys. Rev. Lett. 120, 240501 (2018)
Yang, M., Ren, C., Ma, Y., Xiao, Y., Xiang-Jun Ye, L.-L., Song, J.-S.X., Yung, M.-H., Li, C.-F., Guo, G.-C.: Experimental simultaneous learning of multiple nonclassical correlations. Phys. Rev. Lett. 123, 190401 (2019)
Canabarro, A., Brito, S., Chaves, R.: Machine learning nonlocal correlations. Phys. Rev. Lett. 122, 200401 (2019)
Sirui, L., Huang, S., Li, K., Li, J., Chen, J., Dawei, L., Ji, Z., Shen, Y., Zhou, D., Zeng, B.: Separability-entanglement classifier via machine learning. Phys. Rev. A 98, 012315 (2018)
Canabarro, A., Fanchini, F.F., Malvezzi, A.L., Pereira, R., Chaves, R.: Unveiling phase transitions with machine learning. Phys. Rev. B 100, 045129 (2019)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org
Liang, Y.-C., Masanes, L., Rosset, D.: All entangled states display some hidden nonlocality. Phys. Rev. A 86, 052115 (2012)
Vértesi, T., Brunner, N.: Quantum nonlocality does not imply entanglement distillability. Phys. Rev. Lett. 108, 030403 (2012)
Werner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40(8), 4277 (1989)
Steiner, M.: Generalized robustness of entanglement. Phys. Rev. A 67(5), 054305 (2003)
Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press (2000)
Vidal, G., Tarrach, R.: Robustness of entanglement. Phys. Rev. A 59, 141–155 (1999)
Le, T.T., Fu, W., Moore, J.H.: Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics (Oxford, England) 36, 250–256 (2019)
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2962–2970. Curran Associates, Inc (2015)
Jin, H., Song, Q., Hu, X.: Auto-keras: An efficient neural architecture search system. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1946–1956. ACM (2019)
Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Urban, M., Burkart, M., Dippel, M., Lindauer, M., Hutter, F.: Towards automatically-tuned deep neural networks. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) AutoML: Methods, Sytems, Challenges, chapter 7, pp. 141–156. Springer (2018)
May, R.J., Maier, H.R., Dandy, G.C.: Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw. 23(2), 283–294 (2010)
Życzkowski, K., Penson, K.A., Nechita, I., Collins, B.: Generating random density matrices. J. Math. Phys. 52(6), 062201 (2011)
Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58(2), 883 (1998)
Zyczkowski, K., Sommers, H.-J.: Hilbert–Schmidt volume of the set of mixed quantum states. J. Phys. A Math. Gen. 36(39), 10115 (2003)
Sommers, H.-J., Życzkowski, K.: Statistical properties of random density matrices. J. Phys. A Math. Gen. 37(35), 8457 (2004)
Braunstein, S.L.: Geometry of quantum inference. Phys. Lett. A 219(3–4), 169–174 (1996)
Zyczkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34(35), 7111 (2001)
Horodecki, M., Horodecki, P., Horodecki, R.: Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 283(1–2), 1–7 (2001)
Brandao, F.G.S.L., Vianna, R.O.: Separable multipartite mixed states: operational asymptotically necessary and sufficient conditions. Phys. Rev. Lett. 93(22), 220503 (2004)
Brandão, F.G.S.L.: Quantifying entanglement with witness operators. Phys. Rev. A 72, 022310 (2005)
Doherty, A.C., Parrilo, P.A., Spedalieri, F.M.: Complete family of separability criteria. Phys. Rev. A 69, 022308 (2004)
Terhal, B.M.: Detecting quantum entanglement. Theoret. Comput. Sci. 287(1), 313–335 (2002)
MATLAB. version 9.6 (R2019b). The MathWorks Inc., Natick, Massachusetts (2019)
Löfberg, J.: Yalmip : A toolbox for modeling and optimization in matlab. In: Proceedings of the CACSD Conference, Taipei, Taiwan (2004)
Toh, K.-C., Todd, M.J., Tütüncü, R.H.: SDPT3—a matlab software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11(1-4):545–581 (1999)
Maciej Lewenstein, B., Kraus, P.H., Cirac, J.I.: Characterization of separable states and entanglement witnesses. Phys. Rev. A 63(4), 044304 (2001)
Maciej Lewenstein, B., Kraus, J.I.C., Horodecki, P.: Optimization of entanglement witnesses. Phys. Rev. A 62(5), 052310 (2000)
Ben-Tal, A., Nemirovski, A.: Lectures on Modern Convex Optimization: Analysis, Algorithms, and Engineering Applications. SIAM (2001)
Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Wiley, Hoboken, 62:63 (2003)
Schütze, H., Manning, C.D., Raghavan, P.: Introduction to Information Retrieval, vol. 39. Cambridge University Press, Cambridge (2008)
Platt, J. Sequential minimal optimization: a fast algorithm for training support vector machines. Technical Report MSR-TR-98-14, Microsoft Inc., April (1998)
Cristianini, N., Shawe-Taylor, J., et al.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press (2000)
Keller, J.M., Gray, M.R., Givens, J.A.: A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybernet. SMC–15(4), 580–585 (1985)
Breiman, L., Friedman, J., Stone, C.J., Olshen R.A.: Classification and Regression Trees. CRC Press (1984)
Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y.: Xgboost: extreme gradient boosting. R package version (4–2), 1–4 (2015)
Archer, K.J., Kimes, R.V.: Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52(4), 2249–2260 (2008)
Anderson, D., McNeill, G.: Artificial neural networks technology. Kaman Sci. Corp. 258(6), 1–83 (1992)
Guyon, I., Sun-Hosoya, L., Boullé, M.. Escalante, H.J., Escalera, S., Liu, Z., Jajetic, D., Ray, B., Saeed, M., Sebag, M., Statnikov, A., Tu, W.-W., Viegas, E.: Analysis of the automl challenge series 2015–2018. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning: Methods. Systems, Challenges, pp. 177–219. Springer International Publishing, Cham (2019)
Mehta, P., Bukov, M., Wang, C.-H., Day, A.G.R., Richardson, C., Fisher, C.K., Schwab, D.J.: A high-bias, low-variance introduction to machine learning for physicists. Phys. Rep. 810, 1–124 (2019)
Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)
Salman, R., Kecman, V.: Regression as classification. In: Conference Proceedings—IEEE SOUTHEASTCON, pp. 1–6, 03 (2012)
Aubrun, G., Szarek, S.J.: Tensor products of convex sets and the volume of separable states on \(n\) qudits. Phys. Rev. A 73, 022109 (2006)
Acknowledgements
We acknowledge the financial support by Brazilian agencies CAPES, CNPq, and INCT-IQ (National Institute of Science and Technology for Quantum Information), and SeTIC-UFSC for the computational time in its cluster. AC acknowledges UFAL for a paid license for scientific cooperation at UFRN and the John Templeton Foundation via the Grant Q-CAUSAL No. 61084, the Serrapilheira Institute (Grant No. Serra-1708-15763) and CNPQ (Grant No. \(423713/2016-7\)).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Goes, C.B.D., Canabarro, A., Duzzioni, E.I. et al. Automated machine learning can classify bound entangled states with tomograms. Quantum Inf Process 20, 99 (2021). https://doi.org/10.1007/s11128-021-03037-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03037-9