Abstract
A simulation algorithm based on the law of large number and Monte Carlo method in the classical computer environment is presented. During the simulation of the original quantum BB84 protocol in ideal environment, the sender Alice tries to send classical bit 0 or 1 to the receiver Bob, and the eavesdropper Eve tries to get the transmission information by intercepting and resending the quantum particles. The bit error rate in the quantum BB84 protocol is also given, and the value of the bit error rate can be analyzed if Eve eavesdrops the communication. In addition, the mean square error is introduced to describe the similarity between the simulation data and the theoretical data. (The smaller the mean square error is, the more reasonable the simulation will be.) In this simulation, the value of MSE is \(6.705\times 10^{-5}\) after 5000 times simulation when Eve eavesdrops the communication with the probability of 100%. The time complexity of the simulation algorithm is O(n) in our experiment. The reason why there is always an error between the simulation data and theoretical data is analyzed, and the correctness and rationality of the simulation algorithm are also analyzed.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4), 656 (1949)
Vernam, G.S.: Cipher printing telegraph systems. J. A.I.E.E. 45(6), 572 (1926). https://doi.org/10.1109/JAIEE.1926.6537250
Jian, L., Na, L., Zhang, Y., Wen, S., Wei, D., Chen, W., Wenping, M.: A survey on quantum cryptography. Chin. J. Electron. 27(2), 223 (2018)
Na, W., Fu, J., Bhargava, B.K., Zeng, J.: Efficient retrieval over documents encrypted by attributes in cloud computing. IEEE Trans. Inf. Forensics Secur. 13(10), 2653 (2018)
Wang, N., Fu, J., Li, J., Bhargava, B.K.: Source-location privacy protection based on anonymity cloud in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 15(1), 100 (2020)
Wang, N., Fu, J., Zeng, J., Bhargava, B.K.: Source-location privacy full protection in wireless sensor networks. Inf. Sci. 444, 105 (2018)
Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. Resonance 1(9), 14 (2003)
Howard, R.: Data encryption standard. Comput. Secur. 6(3), 195 (1977)
US Department of Commerce, NIST: Advanced encryption standard. In: National Computer Conference, pp. 83–87 (1997)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)
Allati, A.E., Baz, M.E., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10(5), 589 (2011)
Zhou, X.Y., Zhang, C.H., Zhang, C.M., Wang, Q.: Obtaining better performance in the measurement-device-independent quantum key distribution with heralded single-photon sources. Phys. Rev. A 96(5), 052337 (2017)
Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances., Science 283(5410), 2050 (1999)
Frederic, G., Philippe, G.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88(5), 057902 (2002)
Shapiro, J.H., Zhuang, Q., Zhang, Z., Dove, J., Wong, F.N.C.: Floodlight quantum key distribution. In: Lasers Congress 2016 (ASSL, LSC, LAC), pp. 1–2. Optical Society of America (2016). https://doi.org/10.1364/LSC.2016.LTu5B.1
Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012). https://doi.org/10.1103/PhysRevLett.108.130503
Yang, Y.G., Teng, Y.W., Chai, H.P., Wen, Q.Y.: Revisiting the security of secure direct communication based on ping-pong protocol [Quantum Inf. Process. 8, 347 (2009)]. Quantum Inf. Process. 10(3), 317 (2011)
Hwang, T., Luo, Y.P., Yang, C.W., Lin, T.H.: Quantum authencryption: one-step authenticated quantum secure direct communications for off-line communicants. Quantum Inf. Process. 13(4), 925 (2014)
Yang, C.W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941 (2012)
Chang, H.H., Heo, J.O., Khym, G.L., Lim, J., Hong, S.K., Yang, H.J.: Quantum channels are sufficient for multi-user quantum key distribution protocol between users. Opt. Commun. 283(12), 2644 (2010)
Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261 (2010)
Cai, X.Q., Wang, T.Y., Wei, C.Y., Gao, F.: Cryptanalysis of multiparty quantum digital signatures. Quantum Inf. Process. 18(8), 252 (2019)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, pp. 175–179. IEEE, New York (1984)
Sibson, P., Erven, C., Godfrey, M., Miki, S., Yamashita, T., Fujiwara, M., Sasaki, M., Terai, H., Tanner, M.G., Natarajan, C.M.: Chip-based quantum key distribution. Nat. Commun. 8, 13984 (2017)
Yin, H.L., Chen, T.Y., Yu, Z.W., Liu, H., You, L.X., Zhou, Y.H., Chen, S.J., Mao, Y., Huang, M.Q., Zhang, W.J.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117(19), 190501 (2016)
Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43 (2017)
Li, J., Li, N., Li, L.L., Wang, T.: One step quantum key distribution based on EPR entanglement. Sci. Rep. 6, 28767 (2016)
Jian, L., Yang, Y.G., Chen, X.B., Zhou, Y.H., Shi, W.M.: Practical quantum private database queries based on passive round-robin differential phase-shift quantum key distribution. Sci. Rep. 6, 31738 (2016)
Gottesman, D.: The Heisenberg Representation of Quantum Computers. arXiv e-prints arXiv:quant-ph/9807006 (1998)
Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70(5), 0406196 (2004)
Boger, G.: Spreadsheet simulation of the law of large numbers. Math. Comput. Educ. 39(Fall), 175 (2005)
Revesz, P.: The laws of large numbers. Technometrics 11(3), 625 (1968)
Ohno, K., Esfarjani, K., Kawazoe, Y.: Monte Carlo Methods, pp. 195–270. Springer, Berlin (1999)
Cevallos-Robalino, L.E., Garcia-Fernandez, G.F., Gallego, E., Guzman-Garcia, K.A., Vega-Carrillo, H.R.: Study by Monte Carlo methods of an explosives detection system made up with a D-D neutron generator and NaI(Tl) gamma detectors. Appl. Radiat. Isot. 141, 167 (2018)
Goda, T., Murakami, D., Tanaka, K., Sato, K.: Decision-theoretic sensitivity analysis for reservoir development under uncertainty using multilevel quasi-Monte Carlo methods. Comput. Geosci. 22(4), 1 (2018)
Acknowledgements
This work is supported by the National Natural Science Foundation of China (Grant Nos. U1636106, 61572053) and the China Postdoctoral Science Foundation (Grant No. 2019M650020). A demo will be available at corresponding author’s github.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, J., Li, L., Li, H. et al. Simulation algorithm on the quantum BB84 protocol based on Monte Carlo method in classical computer environment. Quantum Inf Process 19, 335 (2020). https://doi.org/10.1007/s11128-020-02836-w
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02836-w