Quantum QR decomposition in the computational basis | Quantum Information Processing Skip to main content
Log in

Quantum QR decomposition in the computational basis

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a quantum algorithm for approximating the QR decomposition of any \(N\times N\) matrix with a running time \(O(\frac{1}{\epsilon ^2}\) \(N^{2.5}\text {polylog}(N))\), where \(\epsilon \) is the desired precision. This quantum algorithm provides a polynomial speedup over the best classical algorithm, which has a running time \(O(N^3)\). Our quantum algorithm utilizes the quantum computation in the computational basis (QCCB) and a setting of updatable quantum memory. We further present a systematic approach to applying the QCCB to simulate any quantum algorithm. By this approach, the simulation time does not exceed \(O(N^2\text {polylog}(N))\) times the running time of the quantum algorithm originally designed with the amplitude encoding method, where N is the size of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Generally, the time required to compute the QR decomposition of an \(N\times N\) matrix is O\((N^3)\); unless, the matrix has some special structures, such as Vandermonde-like form.

  2. The approach to efficiently implementing the conditional rotations can be found in [25, Lemma 2]

  3. Every time before computing inner product in Algorithm 3, we can apply maximum-finding algorithm [1] and count algorithm [4] to investigate the distribution of the sum terms to obtain the best \(\kappa \).

References

  1. Ahuja, A., Kapoor, S.: A quantum algorithm for finding the maximum. arXiv:quant-ph/9911082 (1999)

  2. Berry, D.W., Childs, A.M., Kothari, R.: Hamiltonian simulation with nearly optimal dependence on all parameters. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 792–809. IEEE (2015)

  3. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195 (2017)

    Article  ADS  Google Scholar 

  4. Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: International Colloquium on Automata, Languages, and Programming, pp. 820–831. Springer (1998)

  5. Buhrman, H., Cleve, R., Watrous, J., De Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  6. Businger, P., Golub, G.H.: Linear least squares solutions by householder transformations. Numer. Math. 7(3), 269–276 (1965)

    Article  MathSciNet  Google Scholar 

  7. Chakraborty, S., Gilyén, A., Jeffery, S.: The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation. arXiv:1804.01973 (2018)

  8. Childs, A.M., Wiebe, N.: Hamiltonian simulation using linear combinations of unitary operations. Quantum Inf. Comput. 12(11–12), 901–924 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Clader, B.D., Jacobs, B.C., Sprouse, C.R.: Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110(25), 250504 (2013)

    Article  ADS  Google Scholar 

  10. Dawson, C.M., Nielsen, M.A.: The Solovay–Kitaev algorithm. Quantum Inf. Comput. 6(1), 81–95 (2006)

    MathSciNet  MATH  Google Scholar 

  11. Gilyén, A., Su, Y., Low, G.H., Wiebe, N.: Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 193–204. ACM (2019)

  12. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103(15), 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  13. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  14. Kerenidis, I., Prakash, A.: Quantum gradient descent for linear systems and least squares. arXiv:1704.04992 (2017)

  15. Kerenidis, I., Prakash, A.: Quantum recommendation systems. In: 8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

  16. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411 (2013)

  17. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum principal component analysis. Nat. Phys. 10(9), 631 (2014)

    Article  Google Scholar 

  18. Nielsen, M.E., Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Parlett, B.N.: The QR algorithm. Comput. Sci. Eng. 2(1), 38 (2000)

    Article  Google Scholar 

  20. Reichel, L.: Fast QR decomposition of vandermonde-like matrices and polynomial least squares approximation. SIAM J. Matrix Anal. Appl. 12(3), 552–564 (1991)

    Article  MathSciNet  Google Scholar 

  21. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56(2), 172–185 (2015)

    Article  ADS  Google Scholar 

  22. Shao, C.: From linear combination of quantum states to Grover’s searching algorithm. arXiv:1807.09693 (2018)

  23. Shao, C.: A quantum model for multilayer perceptron. arXiv:1808.10561 (2018)

  24. Shao, C., Li, Y., Li, H.: Quantum algorithm design: techniques and applications. J. Syst. Sci. Complex. 32(1), 375–452 (2019)

    Article  MathSciNet  Google Scholar 

  25. Wang, C., Wossnig, L.: A quantum algorithm for simulating non-sparse Hamiltonians. arXiv:1803.08273 (2018)

  26. Wossnig, L., Zhao, Z., Prakash, A.: Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120(5), 050502 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. Zhou, S., Loke, T., Izaac, J.A., Wang, J.B.: Quantum Fourier transform in computational basis. Quantum Inf. Process. 16(3), 82 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the reviewers for their constructive and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiman Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Li supported by NSFC (Grant No. 11671388), National Key Research Program 2018YFA0704705. J. Zhao supported by National Natural Science Foundation of China (Grant Nos. 11471040 and 11761131002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Li, H. & Zhao, J. Quantum QR decomposition in the computational basis. Quantum Inf Process 19, 271 (2020). https://doi.org/10.1007/s11128-020-02777-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02777-4

Keywords

Mathematics Subject Classification

Navigation