Abstract
We propose an efficient scheme for generating multiparticle entangled states between two arrays of nitrogen-vacancy centers that interact with two magnetically coupled carbon nanotubes, respectively. We show that through adjusting the external driving microwave fields and the dc currents flowing through the nanotube mechanical resonators, the multiparticle entanglement between the separated arrays of NV centers can be engineered and tuned dynamically. The experimental feasibility of this scheme is analyzed, as well as the method to produce the NOON states of phonon modes is presented using the generated multiparticle entangled states. This scheme may have interesting applications for quantum information processing.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Tao, Y., Boss, J.M., Moores, B.A., Degen, C.L.: Single-crystal diamond nanomechanical resonators with quality factors exceeding one million. Nat. Commun. 5, 3638 (2014)
Burek, M.J., Ramos, D., Patel, P., Frank, I.W., Lončar, M.: Nanomechanical resonant structures in single-crystal diamond. Appl. Phys. Lett. 103(13), 131904 (2013)
Ovartchaiyapong, P., Pascal, L.M.A., Myers, B.A., Lauria, P., Jayich, A.C.B.: High quality factor single-crystal diamond mechanical resonator. Appl. Phys. Lett. 101(16), 163505 (2012)
Sohn, Y.I., Burek, M.J., Kara, V., Kearns, R., Lončar, M.: Dynamic actuation of single-crystal diamond nanobeams. Appl. Phys. Lett. 107(24), 243106 (2015)
Ovartchaiyapong, P., Lee, K.W., Myers, B.A., Jayich, A.C.B.: Dynamic strain-mediated coupling of a single diamond spin to a mechanical resonator. Nat. Commun. 5, 4429 (2014)
Sazonova, V., Yaish, Y., Üstünel, H., Roundy, D., Arias, T.A., McEuen, P.L.: A tunable carbon nanotube electromechanical oscillator. Nature 431(7006), 284–287 (2004)
Witkamp, B., Poot, M., van der Zant, H.S.J.: Bending-mode vibration of a suspended nanotube resonator. Nano Lett. 6(12), 2904–2908 (2006)
Moser, J., Eichler, A., Güttinger, J., Dykman, M.I., Bachtold, A.: Nanotube mechanical resonators with quality factors of up to 5 million. Nat. Nanotechnol. 9(12), 1007–1011 (2014)
Aykol, M., Hou, B.Y., Dhall, R., Chang, S.W., Branham, W., Qiu, J., Cronin, S.B.: Clamping instability and van der Waals forces in carbon nanotube mechanical resonators. Nano Lett. 14(5), 2426–2430 (2014)
Wang, X., Miranowicz, A., Li, H.R., Nori, F.: Hybrid quantum device with a carbon nanotube and a flux qubit for dissipative quantum engineering. Phys. Rev. B 95(20), 205415 (2017)
Pályi, A., Struck, P.R., Rudner, M., Flensberg, K., Burkard, G.: Spin-orbit-induced strong coupling of a single spin to a nanomechanical resonator. Phys. Rev. Lett. 108(20), 206811 (2012)
Chang, K., Eichler, A., Rhensius, J., Lorenzelli, L., Degen, C.L.: Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett. 17(4), 2367–2373 (2017)
Eichler, A., Ruiz, M.D., Plaza, J.A., Bachtold, A.: Strong coupling between mechanical modes in a nanotube resonator. Phys. Rev. Lett. 109(2), 025503 (2012)
Darázs, Z., Kurucz, Z., Kálmán, O., Kiss, T., Fortágh, J., Domokos, P.: Parametric amplification of the mechanical vibrations of a suspended nanowire by magnetic coupling to a Bose–Einstein condensate. Phys. Rev. Lett. 112(13), 133603 (2014)
Muschik, C.A., Moulieras, S., Bachtold, A., Koppens, F.H.L., Lewenstein, M., Chang, D.E.: Harnessing vacuum forces for quantum sensing of graphene motion. Phys. Rev. Lett. 112(22), 223601 (2014)
Stadler, P., Belzig, W., Rastelli, G.: Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current. Phys. Rev. Lett. 113(4), 047201 (2014)
Li, P.B., Xiang, Z.L., Rabl, P., Nori, F.: Hybrid quantum device with nitrogen-vacancy centers in diamond coupled to carbon nanotubes. Phys. Rev. Lett. 117(1), 015502 (2016)
Kálmán, O., Kiss, T., Fortágh, J., Domokos, P.: Quantum galvanometer by interfacing a vibrating nanowire and cold atoms. Nano Lett. 12(1), 435–439 (2012)
Deng, G.W., Zhu, D., Wang, X.H., Zou, C.L., Wang, J.T., Li, H.O., Cao, G., Liu, D., Li, Y., Xiao, M., Guo, G.C., Jiang, K.L., Dai, X.C., Guo, G.P.: Strongly coupled nanotube electromechanical resonators. Nano Lett. 16(9), 5456–5462 (2016)
Zhu, D., Wang, X.H., Kong, W.C., Deng, G.W., Wang, J.T., Li, H.O., Cao, G., Xiao, M., Jiang, K.L., Dai, X.C., Guo, G.C., Nori, F., Guo, G.P.: Coherent phonon rabi oscillations with a high-frequency carbon nanotube phonon cavity. Nano Lett. 17(2), 915–921 (2017)
Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., McEuen, P.L.: Electromechanical resonators from graphene sheets. Science 315(5811), 490–493 (2007)
Weber, P., Güttinger, J., Tsioutsios, I., Chang, D.E., Bachtold, A.: Coupling graphene mechanical resonators to superconducting microwave cavities. Nano Lett. 14(5), 2854–2860 (2014)
Singh, V., Bosman, S.J., Schneider, B.H., Blanter, Y.M., Castellanos-Gomez, A., Steele, G.A.: Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity. Nat. Nanotechnol. 9(10), 820–824 (2014)
Bar-Gill, N., Pham, L.M., Jarmola, A., Budker, D., Walsworth, R.L.: Solid-state electronic spin coherence time approaching one second. Nat. Commun. 4, 1743 (2013)
Hong, S.K., Grinolds, M.S., Maletinsky, P., Walsworth, R.L., Lukin, M.D., Yacoby, A.: Coherent, mechanical control of a single electronic spin. Nano Lett. 12(8), 3920–3924 (2012)
Doherty, M.W., Manson, N.B., Delaney, P., Jelezko, F., Wrachtrup, J., Hollenberg, L.C.L.: The nitrogen-vacancy colour centre in diamond. Phys. Rep.-Rev. Sect. Phys. Lett. 528(1), 1–45 (2013)
Hanson, R., Awschalom, D.D.: Coherent manipulation of single spins in semiconductors. Nature 453(7198), 1043–1049 (2008)
Brenneis, A., Gaudreau, L., Seifert, M., Karl, H., Brandt, M.S., Huebl, H., Garrido, J.A., Koppens, F.H.L., Holleitner, A.W.: Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene. Nat. Nanotechnol. 10(2), 135–139 (2015)
Childress, L., Dutt, M.V.G., Taylor, J.M., Zibrov, A.S., Jelezko, F., Wrachtrup, J., Hemmer, P.R., Lukin, M.D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314(5797), 281–285 (2006)
Bourgeois, E., Jarmola, A., Siyushev, P., Gulka, M., Hruby, J., Jelezko, F., Budker, D., Nesladek, M.: Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nat. Commun. 6, 8577 (2015)
Reserbat-Plantey, A., Schädler, K.G., Gaudreau, L., Navickaite, G., Güttinger, J., Chang, D., Toninelli, C., Bachtold, A., Koppens, F.H.L.: Electromechanical control of nitrogen-vacancy defect emission using graphene NEMS. Nat. Commun. 7, 10218 (2016)
Ajoy, A., Bissbort, U., Poletti, D., Cappellaro, P.: Selective decoupling and hamiltonian engineering in dipolar spin networks. Phys. Rev. Lett. 122(1), 013205 (2019)
Steinert, S., Dolde, F., Neumann, P., Aird, A., Naydenov, B., Balasubramanian, G., Jelezko, F., Wrachtrup, J.: High sensitivity magnetic imaging using an array of spins in diamond. Rev. Sci. Instrum. 81(4), 043705 (2010)
Appel, P., Neu, E., Ganzhorn, M., Barfuss, A., Batzer, M., Gratz, M., Tschöpe, A., Maletinsky, P.: Fabrication of all diamond scanning probes for nanoscale magnetometry. Rev. Sci. Instrum. 87(6), 063703 (2016)
Togan, E., Chu, Y., Trifonov, A.S., Jiang, L., Maze, J., Childress, L., Dutt, M.V.G., Sørensen, A.S., Hemmer, P.R., Zibrov, A.S., Lukin, M.D.: Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466(7307), 730–734 (2010)
Li, P.B., Li, F.L.: Deterministic generation of multiparticle entanglement in a coupled cavity-fiber system. Opt. Express 19(2), 1207–1216 (2011)
Li, P.B., Gao, S.Y., Li, H.R., Ma, S.L., Li, F.L.: Dissipative preparation of entangled states between two spatially separated nitrogen-vacancy centers. Phys. Rev. A 85(4), 042306 (2012)
Zhou, Y., Ma, S.L., Li, B., Li, X.X., Li, F.L., Li, P.B.: Simulating the Lipkin–Meshkov–Glick model in a hybrid quantum system. Phys. Rev. A 96(6), 062333 (2017)
Chen, Q., Yang, W.L., Feng, M., Du, J.F.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A 83(5), 054305 (2011)
Li, X.X., Li, P.B., Ma, S.L., Li, F.L.: Preparing entangled states between two NV centers via the damping of nanomechanical resonators. Sci. Rep.-UK 7(1), 14116 (2017)
Dong, Y., Chen, X.-D., Guo, G.-C., Sun, F.-W.: Robust scalable architecture for a hybrid spin-mechanical quantum entanglement system. Phys. Rev. B 100(21), 214103 (2019)
Chen, X.Y., Yin, Z.Q.: Universal quantum gates between nitrogen-vacancy centers in a levitated nanodiamond. Phys. Rev. A 99(2), 022319 (2019)
Cao, P.H., Betzholz, R., Zhang, S.L., Cai, J.M.: Entangling distant solid-state spins via thermal phonons. Phys. Rev. B 96(24), 245418 (2017)
Dong, L.H., Rong, X., Geng, J.P., Shi, F.Z., Li, Z.K., Duan, C.K., Du, J.F.: Scalable quantum computation scheme based on quantum-actuated nuclear-spin decoherence-free qubits. Phys. Rev. B 96(20), 205149 (2017)
Li, T., Miranowicz, A., Hu, X., Xia, K., Nori, F.: Quantum memory and gates using a \(\Lambda \)-type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97(6), 062318 (2018)
Xu, X.K., Wang, Z.X., Duan, C.K., Huang, P., Wang, P.F., Wang, Y., Xu, N.Y., Kong, X., Shi, F.Z., Rong, X., Du, J.F.: Coherence-protected quantum gate by continuous dynamical decoupling in diamond. Phys. Rev. Lett. 109(7), 070502 (2012)
Zu, C., Wang, W.B., He, L., Zhang, W.G., Dai, C.Y., Wang, F., Duan, L.M.: Experimental realization of universal geometric quantum gates with solid-state spins. Nature 514(7520), 72 (2014)
Yang, W.L., An, J.H., Zhang, C.J., Feng, M., Oh, C.H.: Preservation of quantum correlation between separated nitrogen-vacancy centers embedded in photonic-crystal cavities. Phys. Rev. A 87(2), 022312 (2013)
Lü, X.Y., Xiang, Z.L., Cui, W., You, J.Q., Nori, F.: Quantum memory using a hybrid circuit with flux qubits and nitrogen-vacancy centers. Phys. Rev. A 88(1), 012329 (2013)
Li, P.-B., Liu, Y.-C., Gao, S.Y., Xiang, Z.-L., Rabl, P., Xiao, Y.-F., Li, F.-L.: Hybrid quantum device based on NV centers in diamond nanomechanical resonators plus superconducting waveguide cavities. Phys. Rev. Appl. 4(4), 044003 (2015)
Li, B., Li, P.B., Zhou, Y., Liu, J., Li, H.R., Li, F.L.: Interfacing a topological qubit with a spin qubit in a hybrid quantum system. Phys. Rev. Appl. 11(4), 044026 (2019)
Rabl, P., Cappellaro, P., Dutt, M.V.G., Jiang, L., Maze, J.R., Lukin, M.D.: Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B 79(4), 041302 (2009)
Rabl, P., Kolkowitz, S.J., Koppens, F.H.L., Harris, J.G.E., Zoller, P., Lukin, M.D.: A quantum spin transducer based on nanoelectromechanical resonator arrays. Nat. Phys. 6(8), 602–608 (2010)
Sørensen, A., Mølmer, K.: Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82(9), 1971–1974 (1999)
Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86(22), 5188–5191 (2001)
Dakić, B., Radonjić, M.: Macroscopic superpositions as quantum ground states. Phys. Rev. Lett. 119(9), 090401 (2017)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865–942 (2009)
Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74(1), 197–234 (2002)
Zhou, L.G., Wei, L.F., Gao, M., Wang, X.B.: Strong coupling between two distant electronic spins via a nanomechanical resonator. Phys. Rev. A 81(4), 042323 (2010)
Mølmer, K., Sørensen, A.: Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82(9), 1835–1838 (1999)
Møller, D., Madsen, L.B., Mølmer, K.: Quantum gates and multiparticle entanglement by rydberg excitation blockade and adiabatic passage. Phys. Rev. Lett. 100(17), 170504 (2008)
Zhang, Z., Duan, L.M.: Generation of massive entanglement through an adiabatic quantum phase transition in a spinor condensate. Phys. Rev. Lett. 111(18), 180401 (2013)
Duan, L.M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82(2), 1209–1224 (2010)
Reiter, F., Reeb, D., Sørensen, A.S.: Scalable dissipative preparation of many-body entanglement. Phys. Rev. Lett. 117(4), 040501 (2016)
Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68(3), 035801 (2003)
Zheng, S.B.: One-step synthesis of multiatom Greenberger–Horne–Zeilinger states. Phys. Rev. Lett. 87(23), 230404 (2001)
Zhu, S.L., Wang, Z.D., Zanardi, P.: Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity. Phys. Rev. Lett. 94(10), 100502 (2005)
Morrison, S., Parkins, A.S.: Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick model with proposed realization in optical cavity QED. Phys. Rev. Lett. 100(4), 040403 (2008)
Armata, F., Calajo, G., Jaako, T., Kim, M.S., Rabl, P.: Harvesting multiqubit entanglement from ultrastrong interactions in circuit quantum electrodynamics. Phys. Rev. Lett. 119(18), 183602 (2017)
Zheng, S.B.: Quantum-information processing and multiatom-entanglement engineering with a thermal cavity. Phys. Rev. A 66(6), 060303 (2002)
Yang, C.P., Su, Q.P., Zheng, S.B., Han, S.Y.: Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit. Phys. Rev. A 87(2), 022320 (2013)
Xia, K.Y., Twamley, J.: Generating spin squeezing states and Greenberger–Horne–Zeilinger entanglement using a hybrid phonon-spin ensemble in diamond. Phys. Rev. B 94(20), 205118 (2016)
Ashhab, S., Niskanen, A.O., Harrabi, K., Nakamura, Y., Picot, T., de Groot, P.C., Harmans, C.J.P.M., Mooij, J.E., Nori, F.: Interqubit coupling mediated by a high-excitation-energy quantum object. Phys. Rev. B 77(1), 014510 (2008)
Zhou, Y., Li, B., Li, X.X., Li, F.L., Li, P.B.: Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions. Phys. Rev. A 98(5), 052346 (2018)
Balasubramanian, G., Neumann, P., Twitchen, D., Markham, M., Kolesov, R., Mizuochi, N., Isoya, J., Achard, J., Beck, J., Tissler, J., Jacques, V., Hemmer, P.R., Jelezko, F., Wrachtrup, J.: Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8(5), 383–387 (2009)
Kapale, K.T., Dowling, J.P.: Bootstrapping approach for generating maximally path-entangled photon states. Phys. Rev. Lett. 99(5), 053602 (2007)
Qin, W., Miranowicz, A., Long, G., You, J.Q., Nori, F.: Proposal to test quantum wave-particle superposition on massive mechanical resonators. NPJ Quantum Inf. 5(1), 58 (2019)
Sørensen, A., Mølmer, K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62(2), 022311 (2000)
Sapmaz, S., Blanter, Y.M., Gurevich, L., van der Zant, H.S.J.: Carbon nanotubes as nanoelectromechanical systems. Phys. Rev. B 67(23), 235414 (2003)
Poot, M., van der Zant, H.S.J.: Mechanical systems in the quantum regime. Phys. Rep.-Rev. Sect. Phys. Lett. 511(5), 273–335 (2012)
Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A.: Carbon nanotube quantum resistors. Science 280(5370), 1744–1746 (1998)
Tsutsui, M., Taninouchi, Y., Kurokawa, S., Sakai, A.: Electrical breakdown of short multiwalled carbon nanotubes. J. Appl. Phys. 100(9), 094302 (2006)
Yao, Z., Kane, C.L., Dekker, C.: High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 84(13), 2941–2944 (2000)
Collins, P.G., Hersam, M., Arnold, M., Martel, R., Avouris, P.: Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys. Rev. Lett. 86(14), 3128–3131 (2001)
Johansson, J.R., Nation, P.D., Nori, F.: QuTiP: an open-source Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 183(8), 1760–1772 (2012)
Johansson, J.R., Nation, P.D., Nori, F.: QuTiP 2: a Python framework for the dynamics of open quantum systems. Comput. Phys. Commun. 184(4), 1234–1240 (2013)
Ma, Y., Ding, Q., Wu, E.: Entanglement of two nitrogen-vacancy ensembles via a nanotube. Phys. Rev. A 101(2), 022311 (2020)
Ohashi, K., Rosskopf, T., Watanabe, H., Loretz, M., Tao, Y., Hauert, R., Tomizawa, S., Ishikawa, T., Ishi-Hayase, J., Shikata, S., Degen, C.L., Itoh, K.M.: Negatively charged nitrogen-vacancy centers in a 5 nm thin 12C diamond film. Nano Lett. 13(10), 4733–4738 (2013)
Luo, G., Zhang, Z.Z., Deng, G.W., li, H.O., Cao, G., Xiao, M., Guo, G.C., Tian, L., Guo, G.P.: Strong indirect coupling between graphene-based mechanical resonators via a phonon cavity. Nat. Commun. 9, 383 (2018)
Zhang, Z.Z., Song, X.X., Luo, G., Su, Z.J., Wang, K.L., Cao, G., Li, H.O., Xiao, M., Guo, G.C., Tian, L., Deng, G.W., Guo, G.P.: Coherent phonon dynamics in spatially separated graphene mechanical resonators. PNAS 117(11), 5582–5587 (2020)
Hong, S.W., Banks, T., Rogers, J.A.: Improved density in aligned arrays of single-walled carbon nanotubes by sequential chemical vapor deposition on quartz. Adv. Mater. 22(16), 1826–1830 (2010)
Farrokhabadi, A., Abadian, N., Rach, R., Abadyan, M.: Theoretical modeling of the Casimir force-induced instability in freestanding nanowires with circular cross-section. Physica E 63, 67–80 (2014)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, BL., Li, B., Li, XX. et al. Generation of multiparticle entangled states of nitrogen-vacancy centers with carbon nanotubes. Quantum Inf Process 19, 223 (2020). https://doi.org/10.1007/s11128-020-02714-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02714-5