Discrete-time quantum walk on the Cayley graph of the dihedral group | Quantum Information Processing Skip to main content
Log in

Discrete-time quantum walk on the Cayley graph of the dihedral group

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The finite dihedral group generated by one rotation and one flip is the simplest case of the non-Abelian group. Cayley graphs are diagrammatic counterparts of groups. In this paper, much attention is given to the Cayley graph of the dihedral group. Considering the characteristics of the elements in the dihedral group, we conduct the model of discrete-time quantum walk on the Cayley graph of the dihedral group by special coding mode. This construction makes Fourier transformation be used to carry out spectral analysis of the dihedral quantum walk, i.e. the non-Abelian case. Furthermore, the relation between quantum walk without memory on the Cayley graph of the dihedral group and quantum walk with memory on a cycle is discussed, so that we can explore the potential of quantum walks without and with memory. Here, the numerical simulation is carried out to verify the theoretical analysis results and other properties of the proposed model are further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shor, P.W., Algorithms for quantum computation: Discrete logarithms and factoring. In: IEEE Proceedings of 35th Annual Symposium on Foundations of Computer Science 1994, 124–134 (1994)

  2. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing. ACM, pp. 212–219 (1996)

  3. Ambainis, A.: Quantum random walks—new method for designing quantum algorithms. In: International Conference on Current Trends in Theory and Practice of Computer Science, pp. 1–4. Springer, Berlin, Heidelberg (2008)

  4. Liu, Y., Yuan, J., Duan, B.: Quantum walks on regular uniform hypergraphs. Sci. Rep. 8(1), 9548 (2018)

    Article  ADS  Google Scholar 

  5. Lloyd, S.: Quantum algorithm for solving linear systems of equations. In: APS March Meeting Abstracts. (2010)

  6. Duan, B., Yuan, J., Liu, Y.: Quantum algorithm for support matrix machines. Phys. Rev. A 96(3), 032301 (2017)

    Article  ADS  Google Scholar 

  7. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48(2), 1687 (1993)

    Article  ADS  Google Scholar 

  8. Nayak, A., Vishwanath, A.: Quantum walk on the line[J]. arXiv preprint quant-ph/0010117, (2000)

  9. Ambainis, A., Bach, E., Nayak, A., et al.: One-dimensional quantum walks. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM, pp. 37-49 (2001)

  10. Konno, N.: Quantum random walks in one dimension. Quantum Inf. Process. 1(5), 345054 (2002)

    Article  MathSciNet  Google Scholar 

  11. Konno, N.: A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Soc. Jpn. 57(4), 1179–1195 (2005)

    Article  MathSciNet  Google Scholar 

  12. Konno, N.: Limit theorems and absorption problems for quantum random walks in one dimension. Quantum Inf. Comput. 2, 578–595 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Konno, N., Namiki, T., Soshi, T.: Absorption problems for quantum walks in one dimension. J. Phys. A Math. Gen. 36(1), 241–253 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. Konno, N., Namiki, T., Soshi, T.: Symmetry of distribution for the one-dimensional Hadamard walk. Interdiscip. Inf. Sci. 10(1), 11–22 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Konno, N.: A path integral approach for disordered quantum walks in one dimension. Fluct. Noise Lett. 5(4), 529–537 (2005)

    Article  MathSciNet  Google Scholar 

  16. Konno, N.: Limit theorems and absorption problems for one-dimensional correlated random walks. Stoch. Model. 25(1), 28–49 (2009)

    Article  MathSciNet  Google Scholar 

  17. Konno, N.: One-dimensional discrete-time quantum walks on random environments. Quantum Inf. Process. 8(5), 387–399 (2009)

    Article  MathSciNet  Google Scholar 

  18. Konno, N.: Localization of an inhomogeneous discrete-time quantum walk on the line. Quantum Inf. Process. 9(3), 405–418 (2010)

    Article  MathSciNet  Google Scholar 

  19. Konno, N., Segawa, E.: Localization of discrete-time quantum walks on a half line via the CGMV method. Quantum Inf. Comput. 11(5), 485–495 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Konno, N., Łuczak, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. 12(1), 33–53 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Tregenna, B., Flanagan, W., Maile, R.: Controlling discrete quantum walks: coins and initial states. New J. Phys. 5(1), 83–94 (2003)

    Article  ADS  Google Scholar 

  22. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum walks driven by many coins. Phys. Rev. A 67(5), 052317 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  23. Aharonov, D., Ambainis, A., Kempe, J., et al.: Quantum walks on graphs. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing. ACM, pp. 50–59 (2001)

  24. Bednarska, M., Grudka, A., Kurzyński, P.: Quantum walks on cycles. Phys. Lett. A 317(1–2), 21–25 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  25. Bednarska, M., Grudka, A., Kurzyński, P.: Examples of non-uniform limiting distributions for the quantum walk on even cycles. Int. J. Quantum Inf. 2(04), 453–459 (2004)

    Article  Google Scholar 

  26. Inui, N., Konishi, Y., Konno, N.: Fluctuations of quantum random walks on circles. Int. J. Quantum Inf. 3(03), 535–549 (2005)

    Article  Google Scholar 

  27. Banerjee, S., Srikanth, R., Chandrashekar, C.M.: Symmetry-noise interplay in a quantum walk on an n-cycle. Phys. Rev. A 78(5), 052316 (2008)

    Article  ADS  Google Scholar 

  28. Moore, C., Russell, A.: Quantum walks on the hypercube. In: International Workshop on Randomization and Approximation Techniques in Computer Science, pp. 164–178. Springer, Berlin, Heidelberg (2002)

    Chapter  Google Scholar 

  29. Kempe, J.: Discrete quantum walks hit exponentially faster. Probab. Theory Relat. Fields 133(2), 215–235 (2005)

    Article  MathSciNet  Google Scholar 

  30. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    Article  ADS  Google Scholar 

  31. Serre, J.P.: Linear Representations of Finite Groups. Springer, Berlin (2012)

    Google Scholar 

  32. QiuWeisheng. Group Representation Theory[M]. Higher Education Press. (in Chinese) (2011)

  33. Chartrand, G., Zhang, P.: Introduction to Graph Theory[M]. The Posts and Telecommunications Press, Beijing (2007). (in Chinese)

    MATH  Google Scholar 

  34. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  Google Scholar 

  35. Portugal, R.: Quantum Walks and Search Algorithms. Springer, Berlin (2013)

    Book  Google Scholar 

  36. Montanaro, A.: Quantum walks on directed graphs. Quantum Inf. Comput. 7(1), 93–102 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Gettrick, M.M., Miszczak, J.A.: Quantum walks with memory on cycles. Phys. A Stat. Mech. Appl. 399(4), 163–170 (2014)

    Article  MathSciNet  Google Scholar 

  38. Li, D., Mc Gettrick, M., Gao, F., et al.: Generic quantum walks with memory on regular graphs. Phys. Rev. 535 A 93(4), 042323 (2016)

  39. Higuchi, Y., Konno, N., Sato, I., et al.: Quantum graph walks I: mapping to quantum walks[J]. arXiv:1211.0803 (2012)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61571226, 61701229, 61572053, 61702367), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170802), Postdoctoral Science Foundation Funded Project of China (Grant Nos. 2018M630557, 2018T110499), Jiangsu Planned Projects for Postdoctoral Research Funds (Grant No. 1701139B), the Beijing Natural Science Foundation (Grant No. 4162005), the Research Project of Tianjin Municipal Commission of Education(Grant No. 2017KJ033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Dai.

Appendix: probability distribution of quantum walk with memory on a cycle

Appendix: probability distribution of quantum walk with memory on a cycle

Here, we make a simple description of probability distribution and the time-averaged value of the walk referred to Ref. [37].

In quantum walk with memory on a cycle, the initial state of the walk is \(\left| {{\phi _0}} \right\rangle \) and the vector of amplitudes is \(\varPhi \left( {n,0} \right) \). In the Fourier basis, the initial state is \({\tilde{\varPhi }} \left( {k,0} \right) \), for any \(k = 0, \ldots ,d - 1\), where d is the number of vertices. And the form of the amplitudes after t steps can be calculated and the vector of the amplitudes is

$$\begin{aligned} {\tilde{\varPhi }} \left( {k,t} \right) = M_k^t{\tilde{\varPhi }} \left( {k,0} \right) , \end{aligned}$$
(32)

for any k. The initial state of the walk \({\tilde{\varPhi }} \left( {k,0} \right) \) can be written as \({\tilde{\varPhi }} \left( {k,0} \right) = \sum \limits _{i = 1}^4 {{\alpha _i}\left( k \right) {v_i}\left( k \right) } \) in the \({\left\{ {{v_i}} \right\} _{i = 1, \ldots ,4}}\) basis, where \({\alpha _i}\left( k \right) = \left( {{v_i}\left( k \right) ,{\tilde{\varPhi }} \left( {k,0} \right) } \right) \) are components of \({{\tilde{\varPhi }} \left( {k,0} \right) }\) in the \({\left\{ {{v_i}} \right\} _{i = 1, \ldots ,4}}\) basis. Thus, the evolution in the Fourier basis can be written as

$$\begin{aligned} {\tilde{\varPhi }} \left( {k,t} \right) = M_k^t\sum \limits _{i = 1}^4 {{\alpha _i}\left( k \right) {v_i}\left( k \right) } = \sum \limits _{i = 1}^4 {{\alpha _i}\left( k \right) \lambda _i^t\left( k \right) {v_i}\left( k \right) }, \end{aligned}$$
(33)

where \({\lambda _i}\) and \({v_i}\) are the eigenvalues and eigenvectors, respectively.

The original components can be expressed by the Fourier-transformed vectors as

$$\begin{aligned} \varPhi \left( {n,t} \right) = \frac{1}{d}\sum \limits _{k = 0}^{d - 1} {{e^{\frac{{2\pi ikn}}{d}}}{\tilde{\varPhi }} \left( {k,t} \right) } = \frac{1}{d}\sum \limits _{k = 0}^{d - 1} {\sum \limits _{j = 1}^4 {{e^{\frac{{2\pi ikn}}{d}}}{\alpha _j}\left( k \right) \lambda _j^t\left( k \right) {v_j}\left( k \right) } }. \end{aligned}$$
(34)

Therefore, the probability of finding the particle at the nth node after t steps is

$$\begin{aligned} p\left( {n,t} \right)= & {} {\left| {\varPhi \left( {n,t} \right) } \right| ^2}\nonumber \\= & {} \frac{1}{{{d^2}}}\sum \limits _{k,m = 0}^{d - 1} {\sum \limits _{j,l = 1}^4 {{e^{\frac{{2\pi i\left( {m - k} \right) n}}{d}}}\alpha _j^*\left( k \right) {\alpha _l}\left( m \right) v_j^\dag \left( k \right) {v_l}\left( m \right) {{\left[ {\lambda _j^*\left( k \right) {\lambda _l}\left( m \right) } \right] }^t}} } . \nonumber \\ \end{aligned}$$
(35)

Time-averaged probability distribution is

$$\begin{aligned} {\bar{p}}\left( n \right)= & {} \mathop {\lim }\limits _{t \rightarrow \infty } \frac{1}{t}\sum \limits _{s = 0}^{t - 1} {p\left( {n,s} \right) } \nonumber \\= & {} \frac{1}{{{d^2}}}\sum \limits _{k,m = 0}^{d - 1} {\sum \limits _{j,l = 1}^4 {{e^{\frac{{2\pi i\left( {m - k} \right) n}}{d}}}\alpha _j^*\left( k \right) {\alpha _l}\left( m \right) v_j^\dag \left( k \right) {v_l}\left( m \right) \mathop {\lim }\limits _{t \rightarrow \infty } \frac{1}{t}\sum \limits _{s = 0}^{t - 1} {{{\left[ {\lambda _j^*\left( k \right) {\lambda _l}\left( m \right) } \right] }^s}} } } . \nonumber \\ \end{aligned}$$
(36)

One can observe that the convergence of \({\bar{p}}\left( n \right) \) depends only on the behavior of the term

$$\begin{aligned} {\mathop {\lim }\limits _{t \rightarrow \infty } \frac{1}{t}\sum \limits _{s = 0}^{t - 1} {{{\left[ {\lambda _j^*\left( k \right) {\lambda _l}\left( m \right) } \right] }^s}} }. \end{aligned}$$
(37)

If \({\lambda _j^*\left( k \right) {\lambda _l}\left( m \right) = 1}\), \(\mathop {\lim }\limits _{t \rightarrow \infty } \frac{1}{t}\sum \limits _{s = 0}^{t - 1} {{{\left[ {\lambda _j^*\left( k \right) {\lambda _l}\left( m \right) } \right] }^s}} = 1\), otherwise 0. Unfortunately, any further simplifications of Eqs. (35) and (36) were not possible. However, definition of \(\mathop {\lim }\limits _{t \rightarrow \infty } \frac{1}{t}\sum \limits _{s = 0}^{t - 1} {{{\left[ {\lambda _j^*\left( k \right) {\lambda _l}\left( m \right) } \right] }^s}} \) can be easily calculated using the standard computer algebra systems and thus allows for the evaluation of Eq. (36).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, W., Yuan, J. & Li, D. Discrete-time quantum walk on the Cayley graph of the dihedral group. Quantum Inf Process 17, 330 (2018). https://doi.org/10.1007/s11128-018-2101-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2101-9

Keywords

Navigation