Quantum walks, Ihara zeta functions and cospectrality in regular graphs | Quantum Information Processing Skip to main content
Log in

Quantum walks, Ihara zeta functions and cospectrality in regular graphs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper we explore an interesting relationship between discrete-time quantum walks and the Ihara zeta function of a graph. The paper commences by reviewing the related literature on the discrete-time quantum walks and the Ihara zeta function. Mathematical definitions of the two concepts are then provided, followed by analyzing the relationship between them. Based on this analysis we are able to account for why the Ihara zeta function can not distinguish cospectral regular graphs. This analysis suggests a means by which to develop zeta functions that have potential in distinguishing such structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: STOC’01: Proceedings of ACM Theory of Computing, pp. 50–59. ACM Press, New York (2001)

  2. Ambainis A.: Quantum walks and their algorithmic applications. Int. J. Quantum Inf. 1, 507–518 (2003)

    Article  MATH  Google Scholar 

  3. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of 33th STOC, pp. 60–69. New York, NY, ACM, NewYork (2001)

  4. Bass H.: The Ihara-Selberg zeta function of a tree Lattice. Int’l J. Math. 6, 717–797 (1992)

    Article  MathSciNet  Google Scholar 

  5. Cameron P.J.: Strongly Regular Graphs. Topics in Algebraic Graph Theory, pp. 203–221. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  6. Childs A.M., Farhi E., Gutmann S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1(1/2), 35–43 (2002)

    Article  MathSciNet  Google Scholar 

  7. Childs A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102(18), 180501 (2009)

    Article  PubMed  ADS  MathSciNet  CAS  Google Scholar 

  8. Douglas B.L., Wang J.B.: A classical approach to the graph isomorphism problem using quantum walks. J. Phys. A Math. Theor. 41(7), 075303 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Emms, D., Hancock, E.R., Severini, S., Wilson, R.C.: A matrix representation of graphs and its spectrum as a graph invariant, Electronic J. Combinatorics 13(R34), (2006)

  10. Emms, D.: Analysis of Graph Structure Using Quantum Walks, Ph.D. Thesis, University of York (2008)

  11. Emms D., Severini S., Wilson R.C., Hancock E.R.: Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recognit. 42(9), 1988–2002 (2009)

    Article  MATH  Google Scholar 

  12. Gamble J.K., Friesen M., Zhou D., Joynt R., Coppersmith S.N.: Two-particle quantum walks applied to the graph isomorphism problem. Phys. Rev. A 81(5), 52313 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, pp. 212–219. New York, NY, ACM Press, New York (1996)

  14. Hashimoto K.: Artin-type L-functions and the density theorem for prime cycles on finite graphs. Adv. Stud. Pure Math. 15, 211–280 (1989)

    Google Scholar 

  15. Ihara Y.: On discrete subgroups of the two by two projective linear group over P-adic fields. J. Math. Soc. Jpn. 18, 219–235 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kempe J.: Quantum random walks—an introductory overview. Contemp. Phys. 44(4), 307–327 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Konno N.: One-dimensional discrete-time quantum walks on random environments. Quantum Inf. Process. 8(5), 387–399 (2009)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Kotani M., Sunada T.: Zeta functions of finite graphs. J. Math. Sci. Univ. Tokyo 7(1), 7–25 (2000)

    MATH  MathSciNet  Google Scholar 

  19. Scott G., Storm C.: The coefficients of the Ihara zeta function. Involve A J. Math. 1(2), 217–233 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Shankar R.: Principles of Quantum Mechanics. 2nd edn. Plenum, New York (1994)

    MATH  Google Scholar 

  21. Shiau S.-Y., Joynt R., Coppersmith S.N.: Physically-motivated dynamical algorithms for the graph isomorphism problem. Quantum Inform. Comput. 5(6), 492–506 (2005)

    MATH  MathSciNet  Google Scholar 

  22. Stark H.M., Terras A.A.: Zeta functions of finite graphs and coverings. Adv. Math. 121, 124–165 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Stark H.M., Terras A.A.: Zeta functions of finite graphs and coverings, II. Adv. Math. 154, 132–195 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stark H.M., Terras A.A.: Zeta functions of finite graphs and coverings, III. Adv. Math. 208(2), 467–489 (2007)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, P., Aleksić, T., Emms, D. et al. Quantum walks, Ihara zeta functions and cospectrality in regular graphs. Quantum Inf Process 10, 405–417 (2011). https://doi.org/10.1007/s11128-010-0205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0205-y

Keywords

Navigation