Few-mode ring core fiber characteristics: temperature impact | Photonic Network Communications
Skip to main content

Few-mode ring core fiber characteristics: temperature impact

  • Original Paper
  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

In this paper, a novel fiber is proposed to support few linearly polarized (LP) modes, with the feature of a circular ring-shaped core filled by liquid. This fiber supports four LP modes: LP01, LP02, LP31 and LP11. The properties of all spatial modes are numerically analyzed by considering the different optical parameters such as confinement loss, dispersion and differential modal delay (DMD) at different temperatures. The obtained results show that the proposed fiber reduces the confinement loss as well as DMD over the entire range of the C-band. The same characteristics are also investigated and optimized at 1.55 μm in the temperature range 20–80 °C. Both confinement loss and DMD evidently decrease with temperature leading to the possibility of using this type of fibers as temperature sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hanzawa, N., Saitoh, K., Sakamoto, T., Matsui, T., Tomita, S., Koshiba, M.: Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler. In: Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2011), INSPEC Accession Number: 12061432, Los Angeles, CA, USA, 6–10 March 2011

  2. Ip, E., Li, M.J., Bennett, K. , Huang, Y.K., Tanaka, A., Korolev, A., Koreshkov, K., Wood, W., Mateo, E., Hu, J., Yano, Y.: 146λ × 6×19-Gbaud wavelength-and-mode-division multiplexed transmission over 10 × 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA. In: Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2013), INSPEC Accession Number: 13582502, Anaheim, CA, USA, 17–21 March 2013

  3. Salsi, M., Koebele, C., Charlet, G., Bigo, S.: Mode division multiplexed transmission with a weakly-coupled few-mode fiber. In: Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2012), Los Angeles, CA, USA, pp. 4–8, 1–3 March 2012

  4. Sakamoto, T., Mori, T., Yamamoto, T., Hanzawa, N., Tomita, S., Yamamoto, F., Saitoh, K., Koshiba, M.: Mode-division multiplexing transmission system with DMD-independent low complexity MIMO processing. J. Lightwave Technol. 31(13), 2192–2199 (2013)

    Article  Google Scholar 

  5. Alavi, S.E., Amiri, I.S., Ahmad, H., Supaat, A.S.M., Fisal, N.: Generation and transmission of 3 × 3 w-band multi-input multi-output orthogonal frequency division multiplexing-radio-over-fiber signals using micro-ring resonators. Appl. Opt. 53, 8049–8054 (2014)

    Article  Google Scholar 

  6. Amiri, I.S., Alavi, S.E., Fisal, N., Supaat, A.S.M., Ahmad, H.: All-optical generation of Two IEEE802.11n signals for 2 × 2 MIMO-RoF via MRR system. IEEE Photonics J. 6, 1–12 (2014)

    Article  Google Scholar 

  7. Hindia, M.N., Qamar, F., Rahman, T.A., Amiri, I.S.: A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Netw. 74, 34–46 (2018)

    Article  Google Scholar 

  8. Hindia, M.N., Fadoul, M.M., Rahman, T.A., Amiri, I.S.: A stochastic geometry approach to full-duplex MIMO relay network. Wirel. Commun. Mob. Comput. 2018, 1–11 (2018)

    Article  Google Scholar 

  9. Ryf, R., Randel, S., Fontaine, N.K., Montoliu, M., Burrows, E., Corteslli, S., Chandrasekhar, S., Gnauck, A.H., Xie, C., Essiambre, R.-J., Winzer, P.J., Delbue, R., Pupalaikis, P., Sureka, A., Sun, Y., Gruner-Nielsen, L., Jensen, R.V., Lingle, R.: 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode-fiber. In: Proceedings of the Optical Fiber Communication Conference and Exposition, and the National Fiber Optic Engineers Conference (OFC/NFOE 2013), INSPEC Accession Number: 13582501, Anaheim, CA, USA, 17–21 March 2013

  10. Vigneswaran, D., Ayyanar, N., Sumathi, M., Mani Rajan, M.S.: Tunable differential modal gain in FM-EDFA system using dual pumping scheme at 100 Gbps system capacity. Photon Netw. Commun. 34(3), 451–460 (2017)

    Article  Google Scholar 

  11. Ferreira, F., Fonseca, D., Silva, H.: Design of few-mode fibers with arbitrary and flattened differential mode delay. IEEE Photonics Technol. Lett. 25(5), 438–441 (2013)

    Article  Google Scholar 

  12. Gruner-Nielsen, L., Sun, Y., Nicholson, J., Jakobsen, D., Jespersen, K., Lingle, R., Palsdottir, B.: Few mode transmission fiber with low DGD low mode coupling, and low loss. J. Lightwave Technol. 30(23), 3693–3698 (2012)

    Article  Google Scholar 

  13. Chebaane, S., Fathallah, H., Seleem, H., Machhout, M.: Proposed raised cosine FMF for dispersion management in next-generation optical networks. IEEE Photonics J. 8(1), 1–12 (2016)

    Article  Google Scholar 

  14. Fontaine, N.K., Ryf, R., Hirano, M., Sasaki, T.: Experimental investigation of crosstalk accumulation in a ring-core fiber. In: Proceedings of the IEEE Photonics Society Summer Tropical Meeting Series, INSPEC Accession Number: 13827287, Waikoloa, HI, USA, 8–10 July 2013

  15. Kasahara, M., Saitoh, K., Sakamoto, T., Hanzawa, N., Matsui, T., Tsujikawa, K., Yamamoto, F.: Design of three-spatial-mode ring-core fiber. J. Lightwave Technol. 32(7), 1337–1343 (2014)

    Article  Google Scholar 

  16. Jin, X.Q., Li, R., O’Brien, D.C., Payne, F.P.: Linearly polarized mode division multiplexed transmission over ring-index multimode fibres. In: Proceedings of the IEEE Photonics Society Summer Tropical Meeting Series, INSPEC Accession Number: 13827306, Waikoloa, HI, USA, 8–10 July 2013

  17. Hecht, J.: City of Light: The Story of Fiber Optics. Oxford University Press, Cary 2004. http://site.ebrary.com/lib/rtulv/docDetail.action?docID=10103603

  18. Altkorn, R., Koev, I., Van Duyne, R.P., Litorja, M.: Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl. Opt. 36(34), 8992–8999 (1997)

    Article  Google Scholar 

  19. Petrini, P.A., PizolatoJr, J.C., De Francisco, C.A., Alcantara, L.D.S., Salgado, F.C., Spadoti, D.H.: A liquid-filled W-type optical fiber temperature sensor. In: Proceedings of the International Conference on Microwave and Optoelectronics (IMOC), INSPEC Accession Number: 15695477, Porto de Galinhas, Brazil, 3–6 Nov. 2015

  20. Ghosh, G., Endo, M., Endo, M., Lwasaki, T.: Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glass. J. Lightwave Technol. 12(8), 1338–1342 (1994)

    Article  Google Scholar 

  21. Du, J., Liu, Y., Wang, Z., Liu, Z., Zou, B., Jin, L., Liu, B., Kai, G., Dong, X.: Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid. Opt. Express 16(6), 4263–4269 (2008)

    Article  Google Scholar 

  22. Zhao, Y., Xia, F., Hai-Feng, H., Chao, D.: A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement. IEEE Trans. Instrum. Meas. 66, 3378–3386 (2017)

    Article  Google Scholar 

  23. Dai, B., Shen, X., Li, J., Dai, N., Yang, L., Xiongwei, H., Wang, Y., Liu, Y., Peng, J., Li, H.: Core regulation of long period grating based on ring-core hollow fiber and the application of temperature sensing. IEEE Photonics 09, 1–7 (2017)

    Article  Google Scholar 

  24. Brunet, C., Ung, B., Wang, L., Messaddeq, Y., LaRochelle, S., Rusch, L.A.: Design of a family of ring-core fibers for OAM transmission studies. Opt. Express 23(8), 10553–10563 (2015)

    Article  Google Scholar 

  25. Gregg, P., et al.: Stable transmission of 12 OAM states in air-core fiber. In: Proceedings of IEEE CLEO, June 2013, pp. 1–2

  26. Vigneswaran, D., Ayyanar, N., Sharmac, M., Sumathi, M., Mani Rajan, M.S., Porsezian, K.: Salinity sensor using photonic crystal fiber. Sens. Actuators A 269, 22–28 (2018)

    Article  Google Scholar 

  27. Yu, C., Liou, J., Huang, S., Chang, H.: Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation. Opt. Express 16(7), 4443–4451 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Mani Rajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vigneswaran, D., Mani Rajan, M.S., Aly, M.H. et al. Few-mode ring core fiber characteristics: temperature impact. Photon Netw Commun 37, 131–138 (2019). https://doi.org/10.1007/s11107-018-0804-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-018-0804-6

Keywords