Abstract
In this paper, a novel fiber is proposed to support few linearly polarized (LP) modes, with the feature of a circular ring-shaped core filled by liquid. This fiber supports four LP modes: LP01, LP02, LP31 and LP11. The properties of all spatial modes are numerically analyzed by considering the different optical parameters such as confinement loss, dispersion and differential modal delay (DMD) at different temperatures. The obtained results show that the proposed fiber reduces the confinement loss as well as DMD over the entire range of the C-band. The same characteristics are also investigated and optimized at 1.55 μm in the temperature range 20–80 °C. Both confinement loss and DMD evidently decrease with temperature leading to the possibility of using this type of fibers as temperature sensors.
Similar content being viewed by others
References
Hanzawa, N., Saitoh, K., Sakamoto, T., Matsui, T., Tomita, S., Koshiba, M.: Demonstration of mode-division multiplexing transmission over 10 km two-mode fiber with mode coupler. In: Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2011), INSPEC Accession Number: 12061432, Los Angeles, CA, USA, 6–10 March 2011
Ip, E., Li, M.J., Bennett, K. , Huang, Y.K., Tanaka, A., Korolev, A., Koreshkov, K., Wood, W., Mateo, E., Hu, J., Yano, Y.: 146λ × 6×19-Gbaud wavelength-and-mode-division multiplexed transmission over 10 × 50-km spans of few-mode fiber with a gain-equalized few-mode EDFA. In: Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2013), INSPEC Accession Number: 13582502, Anaheim, CA, USA, 17–21 March 2013
Salsi, M., Koebele, C., Charlet, G., Bigo, S.: Mode division multiplexed transmission with a weakly-coupled few-mode fiber. In: Proceedings of the Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC 2012), Los Angeles, CA, USA, pp. 4–8, 1–3 March 2012
Sakamoto, T., Mori, T., Yamamoto, T., Hanzawa, N., Tomita, S., Yamamoto, F., Saitoh, K., Koshiba, M.: Mode-division multiplexing transmission system with DMD-independent low complexity MIMO processing. J. Lightwave Technol. 31(13), 2192–2199 (2013)
Alavi, S.E., Amiri, I.S., Ahmad, H., Supaat, A.S.M., Fisal, N.: Generation and transmission of 3 × 3 w-band multi-input multi-output orthogonal frequency division multiplexing-radio-over-fiber signals using micro-ring resonators. Appl. Opt. 53, 8049–8054 (2014)
Amiri, I.S., Alavi, S.E., Fisal, N., Supaat, A.S.M., Ahmad, H.: All-optical generation of Two IEEE802.11n signals for 2 × 2 MIMO-RoF via MRR system. IEEE Photonics J. 6, 1–12 (2014)
Hindia, M.N., Qamar, F., Rahman, T.A., Amiri, I.S.: A stochastic geometrical approach for full-duplex MIMO relaying model of high-density network. Ad Hoc Netw. 74, 34–46 (2018)
Hindia, M.N., Fadoul, M.M., Rahman, T.A., Amiri, I.S.: A stochastic geometry approach to full-duplex MIMO relay network. Wirel. Commun. Mob. Comput. 2018, 1–11 (2018)
Ryf, R., Randel, S., Fontaine, N.K., Montoliu, M., Burrows, E., Corteslli, S., Chandrasekhar, S., Gnauck, A.H., Xie, C., Essiambre, R.-J., Winzer, P.J., Delbue, R., Pupalaikis, P., Sureka, A., Sun, Y., Gruner-Nielsen, L., Jensen, R.V., Lingle, R.: 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode-fiber. In: Proceedings of the Optical Fiber Communication Conference and Exposition, and the National Fiber Optic Engineers Conference (OFC/NFOE 2013), INSPEC Accession Number: 13582501, Anaheim, CA, USA, 17–21 March 2013
Vigneswaran, D., Ayyanar, N., Sumathi, M., Mani Rajan, M.S.: Tunable differential modal gain in FM-EDFA system using dual pumping scheme at 100 Gbps system capacity. Photon Netw. Commun. 34(3), 451–460 (2017)
Ferreira, F., Fonseca, D., Silva, H.: Design of few-mode fibers with arbitrary and flattened differential mode delay. IEEE Photonics Technol. Lett. 25(5), 438–441 (2013)
Gruner-Nielsen, L., Sun, Y., Nicholson, J., Jakobsen, D., Jespersen, K., Lingle, R., Palsdottir, B.: Few mode transmission fiber with low DGD low mode coupling, and low loss. J. Lightwave Technol. 30(23), 3693–3698 (2012)
Chebaane, S., Fathallah, H., Seleem, H., Machhout, M.: Proposed raised cosine FMF for dispersion management in next-generation optical networks. IEEE Photonics J. 8(1), 1–12 (2016)
Fontaine, N.K., Ryf, R., Hirano, M., Sasaki, T.: Experimental investigation of crosstalk accumulation in a ring-core fiber. In: Proceedings of the IEEE Photonics Society Summer Tropical Meeting Series, INSPEC Accession Number: 13827287, Waikoloa, HI, USA, 8–10 July 2013
Kasahara, M., Saitoh, K., Sakamoto, T., Hanzawa, N., Matsui, T., Tsujikawa, K., Yamamoto, F.: Design of three-spatial-mode ring-core fiber. J. Lightwave Technol. 32(7), 1337–1343 (2014)
Jin, X.Q., Li, R., O’Brien, D.C., Payne, F.P.: Linearly polarized mode division multiplexed transmission over ring-index multimode fibres. In: Proceedings of the IEEE Photonics Society Summer Tropical Meeting Series, INSPEC Accession Number: 13827306, Waikoloa, HI, USA, 8–10 July 2013
Hecht, J.: City of Light: The Story of Fiber Optics. Oxford University Press, Cary 2004. http://site.ebrary.com/lib/rtulv/docDetail.action?docID=10103603
Altkorn, R., Koev, I., Van Duyne, R.P., Litorja, M.: Low-loss liquid-core optical fiber for low-refractive-index liquids: fabrication, characterization, and application in Raman spectroscopy. Appl. Opt. 36(34), 8992–8999 (1997)
Petrini, P.A., PizolatoJr, J.C., De Francisco, C.A., Alcantara, L.D.S., Salgado, F.C., Spadoti, D.H.: A liquid-filled W-type optical fiber temperature sensor. In: Proceedings of the International Conference on Microwave and Optoelectronics (IMOC), INSPEC Accession Number: 15695477, Porto de Galinhas, Brazil, 3–6 Nov. 2015
Ghosh, G., Endo, M., Endo, M., Lwasaki, T.: Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glass. J. Lightwave Technol. 12(8), 1338–1342 (1994)
Du, J., Liu, Y., Wang, Z., Liu, Z., Zou, B., Jin, L., Liu, B., Kai, G., Dong, X.: Thermally tunable dual-core photonic bandgap fiber based on the infusion of a temperature-responsive liquid. Opt. Express 16(6), 4263–4269 (2008)
Zhao, Y., Xia, F., Hai-Feng, H., Chao, D.: A ring-core optical fiber sensor with asymmetric LPG for highly sensitive temperature measurement. IEEE Trans. Instrum. Meas. 66, 3378–3386 (2017)
Dai, B., Shen, X., Li, J., Dai, N., Yang, L., Xiongwei, H., Wang, Y., Liu, Y., Peng, J., Li, H.: Core regulation of long period grating based on ring-core hollow fiber and the application of temperature sensing. IEEE Photonics 09, 1–7 (2017)
Brunet, C., Ung, B., Wang, L., Messaddeq, Y., LaRochelle, S., Rusch, L.A.: Design of a family of ring-core fibers for OAM transmission studies. Opt. Express 23(8), 10553–10563 (2015)
Gregg, P., et al.: Stable transmission of 12 OAM states in air-core fiber. In: Proceedings of IEEE CLEO, June 2013, pp. 1–2
Vigneswaran, D., Ayyanar, N., Sharmac, M., Sumathi, M., Mani Rajan, M.S., Porsezian, K.: Salinity sensor using photonic crystal fiber. Sens. Actuators A 269, 22–28 (2018)
Yu, C., Liou, J., Huang, S., Chang, H.: Tunable dual-core liquid-filled photonic crystal fibers for dispersion compensation. Opt. Express 16(7), 4443–4451 (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vigneswaran, D., Mani Rajan, M.S., Aly, M.H. et al. Few-mode ring core fiber characteristics: temperature impact. Photon Netw Commun 37, 131–138 (2019). https://doi.org/10.1007/s11107-018-0804-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11107-018-0804-6