Abstract
Keimel was first to associate a spectrum with an abelian l-group G. An alternative construction of a spectrum is proposed here. Its points are the prime l-ideals of G, i.e., they are the points of Keimel’s spectrum plus the improper prime l-ideal G. The spectrum is equipped with the inverse topology, which is different from the one used by Keimel. The new spectrum is denoted by Specinv(G) and is called the inverse spectrum of G. There is a natural construction of a sheaf of l-groups on Specinv(G), which is called the structure sheaf of G on Specinv(G). The inverse spectrum and its structure sheaf first appeared in Rump and Yang (Bull Lond Math Soc 40:263–273, 2008) via the Jaffard-Ohm Theorem. We present an elementary and direct construction. The relationship between an l-group H and an l-subgroup G is analyzed via the structure sheaves on the inverse spectra. The structure sheaves are used to give a sheaf-theoretic presentation of the valuation theory of a field. The group of Cartier divisors of an integral affine scheme is identified canonically with an l-group. Special attention is paid to Prüfer domains, where the ties between rings and l-groups are particularly close.
Similar content being viewed by others
References
Anderson, M., Feil, T.: Lattice-ordered Groups. D. Reidel Publ. Co., Dordrecht (1988)
Becker, E.: The Real Holomorphy Ring and Sums of 2n-th Powers. Lecture Notes in Mathematics, vol. 956, pp. 139–181. Springer, Berlin (1982)
Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et anneaux réticulés. Lecture Notes in Mathematics, vol. 608. Springer, Berlin (1977)
Bourbaki, N.: Algèbre Commutative, chapitres 5 et 6. Hermann, Paris (1964)
Cignoli, R., D’Ottaviano, I., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht (2000)
Delfs, H.: Sheaf Theory and Borel-Moore Homology on Locally Semialgebraic Spaces. Lecture Notes in Mathematics, vol. 1484. Springer, Berlin (1991)
Dickmann, M., Schwartz, N., Tressl, M.: Spectral Spaces. Book manuscript (in preparation)
Dubuc, E.J., Poveda, Y.A.: Representation theory of MV-algebras. Ann. Pure Appl. Logic 161, 1024–1046 (2010)
Endler, O.: Valuation Theory. Springer, Berlin (1972)
Engler, A.J., Prestel, A.: Valued Fields. Springer, Berlin (2005)
Fuchs, L.: Teilweise Geordnete Algebraische Strukturen. Vandenhoeck & Ruprecht, Göttingen (1966)
Gilmer, R.: Multiplicative Ideal Theory. Marcel Dekker, New York (1972)
Godement, R.: Théorie des Faisceaux. Hermann, Paris (1964)
Graetzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (1998)
Grothendieck, A.: Eléments de Géométrie Algébrique, I. Springer, Berlin (1971)
Hartshorne, R.: Algebraic Geometry. Springer, New York (1977)
Hochster, M.: Prime ideal structure in commutative rings. Trans. Amer. Math. Soc. 142, 43–60 (1969)
Keimel, K.: The Representation of Latice-ordered Groups and Rings by Sections in Sheaves. In: Lecture Notes in Mathematics, vol. 248, pp. 1–98. Springer, Berlin (1971)
Knebusch, M., Scheiderer, C.: Einführung in die reelle Algebra. Vieweg, Braunschweig (1989)
Matsumura, H.: Commutative Algebra. Benjamin/Cummings, Reading, MA (1980)
Močkoř, J.: Groups of Divisibility. D. Reidel, Dordrecht (1983)
Ribenboim, P.: Théorie des valuations. Les Presses de l’Université de Montréal, Montréal (1965)
Rump, W., Yang, Y.C.: Jaffard-Ohm correspondence and Hochster duality. Bull. Lond. Math. Soc. 40, 263–273 (2008)
Schülting, H.-W.: Über reelle Stellen eines Körpers und ihren Holomorphiering. Thesis, Dortmund (1979)
Schülting, H.-W.: On real places of a field and their holomorphy ring. Commun. Algebra 10, 1239–1284 (1982)
Schwartz, N.: The Basic Theory of Real Closed Spaces. Memoirs AMS, no. 397. Amer. Math. Soc., Providence (1989)
Schwartz, N.: Eine universelle Eigenschaft reell abgeschlossener Räume. Commun. Algebra 18, 755–774 (1990)
Schwartz, N.: Inverse real closed spaces. Illinois J. Math. 35, 536–568 (1991)
Schwartz, N., Madden, J.J.: Semi-algebraic Function Rings and Reflector of Partially Ordered Rings. Lecture Notes in Mathematics, vol. 1712. Springer, Berlin (1999)
Zariski, O., Samuel, P.: Commutative Algebra. II. Van Nostrand, Princeton (1960)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schwartz, N. Sheaves of Abelian l-groups. Order 30, 497–526 (2013). https://doi.org/10.1007/s11083-012-9258-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-012-9258-0