Abstract
We show that the order complex of any finite lattice with a chain \(\widehat{0} < m_{1} < \cdots < m_{r} < \widehat{1}\) of modular elements is at least (r−2)-connected.
Similar content being viewed by others
References
Björner, A.: Shellable and Cohen-Macaulay partially ordered sets. Trans. Am. Math. Soc. 260(1), 159–183 (1980)
Björner, A.: Subspace arrangements. First European Congress of Mathematics, vol. I (Paris, 1992) pp. 321–370. Progr. Math., 119, Birkhäuser, Basel (1994)
Björner, A.: Topological methods. In: Handbook of Combinatorics, vol. 1, 2, pp. 1819–1872. Elsevier, Amsterdam (1995)
Björner, A., Walker, J.: A homotopy complementation formula for partially ordered sets. Eur. J. Comb. 4(1), 11–19 (1983)
Gasharov, V., Peeva, I., Welker, V.: The lcm-lattice in monomial resolutions. Math. Res. Lett. 6(5–6), 521–532 (1999)
Goresky, M., MacPherson, R.: Stratified Morse theory Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Ban 14. Springer, Berlin Heidelberg New York (1988)
Herzog, J., Reiner, V., Welker, V.: The Koszul property in affine semigroup rings. Pac. J. Math. 186, 39–65 (1998)
Hersh, P., Welker, V.: Gröbner basis degree bounds on \({\text{Tor}}^{{k{\left[ \Lambda \right]}}}_{ \bullet } {\left( {k,k} \right)}_{ \bullet }\) and discrete Morse theory for posets. Integer points in polyhedra – geometry, number theory, algebra, optimization, pp. 101–138, Contemp Math, vol. 374, Amer. Math. Soc, Providence, RI 2005.
Miller, E., Sturmfels, B.: Combinatorial commutative algebra. Graduate Texts in Mathematics, 227. Springer, Berlin Heidelberg New York (2005)
Peeva, I.: Resolutions and lattices. The Roos Festschrift, vol. 2. Homology, Homotopy, and Applications 4(2) part 2, 427–437 (2002)
Peeva, I., Reiner, V., Sturmfels, B.: How to shell a monoid. Math. Ann. 310, 379–393 (1998)
Schmidt, R.: Subgroup lattices of groups. de Gruyter Expositions in Mathematics 14. Walter de Gruyter, Berlin (1994)
Stanley, R.: Supersolvable lattices. Algebra Univers. 2, 197–217 (1972)
Ziegler, G., Zivaljevic, R.: Homotopy types of subspace arrangements via diagrams of spaces. Math. Ann. 295, 527–548 (1993)
Author information
Authors and Affiliations
Corresponding author
Additional information
The first author was supported during part of this work by a postdoctoral fellowship from the Mathematical Sciences Research Institute. The second author was supported by NSF grant DMS-0300483.
Rights and permissions
About this article
Cite this article
Hersh, P., Shareshian, J. Chains of Modular Elements and Lattice Connectivity. Order 23, 339–342 (2006). https://doi.org/10.1007/s11083-006-9053-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-006-9053-x