Abstract
The objective of this paper is to investigate the role of the set of irrational numbers as the codomain of order-preserving functions defined on topological totally preordered sets. We will show that although the set of irrational numbers does not satisfy the Debreu property it is still nonetheless true that any lower (respectively, upper) semicontinuous total preorder representable by a real-valued strictly isotone function (semicontinuous or not) also admits a representation by means of a lower (respectively, upper) semicontinuous strictly isotone function that takes values in the set of irrational numbers. These results are obtained by means of a direct construction. Moreover, they can be related to Cantor’s characterization of the real line to obtain much more general results on the semicontinuous Debreu properties of a wide family of subsets of the real line.
Similar content being viewed by others
References
Aliprantis, Ch. D., Border, K.C.: Infinite Dimensional Analysis: A Hitchiker’s Guide. Springer, Berlin Heidelberg New York (1999)
Beardon, A.F.: Debreu’s gap theorem. Econ. Theory 2, 150–152 (1992)
Beardon, A.F.: Utility theory and continuous monotonic functions. Econ. Theory 4, 531–538 (1994)
Beardon, A.F., Candeal, J.C., Herden, G., Induráin, E., Mehta, G.B.: The non-existence of a utility function and the structure of non-representable preference relations. J. Math. Econ. 37, 17–38 (2002)
Beardon, A.F., Mehta, G.B.: Utility functions and the order type of the continuum. J. Math. Econ. 23, 387–390 (1994)
Birkhoff, G.: Lattice Theory (Third edition). American Mathematical Society, Providence, RI (1967)
Bosi, G., Herden, G.: On the structure of completely useful topologies. Appl. Gen. Topol. 3(2), 145–167 (2002)
Bosi, G., Mehta, G.B.: Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof. J. Math. Econ. 38, 311–328 (2002)
Bridges, D.S., Mehta, G.B.: Representations of preference orderings. Springer, Berlin Heidelberg New York (1995)
Courant, R., Robbins, H.: What is Mathematics?. Oxford University Press, London, UK (1941)
Debreu, G.: Representation if a preference ordering by a numerical function. In: Thrall, R., Coombs, C., Davies, R. (eds.) Decision Processes, pp. 159–166. Wiley, New York (1954)
Herden, G., Mehta, G.B.: Debreu’s Gap Lemma for Semicontinuous Utility Functions (Preprint). Universität GH Essen and University of Queensland (2003a)
Herden, G., Mehta, G.B.: Semicontinuous Utility Functions (Preprint). Universität GH Essen and University of Queensland (2003b)
Herden, G., Mehta, G.B.: The Debreu gap lemma and some generalizations. J. Math. Econ. 40(7), 747–769 (2004)
Jech, T.: Set Theory. Academic, New York (1978)
Liouville, J.: Sur des classes très étendues de quantités dont la valeur n’ est ni algébrique ni même réductible à des traditionnelles algébriques. Comptes Rendus de l’ Académie des Sciences de Paris 18, 883–885 (1844)
Mahler, K.: On the approximation of π. Proceedings of the Nederland Akademie Wetenschappen, Series A 56, 29–42 (1953)
Mehta, G.B.: Preference and utility. In: Barberà, S., Hammond, P., Seidl, C. (eds.) Handbook of Utility Theory, pp. 1–47. Kluwer, Dordrecht (1998)
Oxtoby, J.C.: Measure and Category (Second edition). Springer, New York (1980)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Campión, M.J., Candeal, J.C., Induráin, E. et al. Order Embeddings with Irrational Codomain: Debreu Properties of Real Subsets. Order 23, 343–357 (2006). https://doi.org/10.1007/s11083-006-9052-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-006-9052-y