Abstract
We define a global order of norms using strongly optimal strategies in Blackwell games and prove that it is a prewellordering under the assumption of the Axiom of Blackwell determinacy.
Similar content being viewed by others
References
Addison, J. W. and Moschovakis, Y. N.: Some consequences of the axiom of definable determinateness, Proc. Natl. Acad. Sci. USA 59 (1968), 708–712.
Blackwell, D.: Infinite \(G_\delta\) games with imperfect information, Pol. Akad. Nauk – Inst. Mat. – Zastos. Mat. 10 (1969), 99–101.
Chalons, C.: A unique integer associated to each map from \(E^\omega\) to \(\omega\), C. R. Acad. Sci., Sér. 1 Math. 331 (2000), 501–506.
Duparc, J.: The steel hierarchy of ordinal valued Borel mappings, J. Symb. Log. 68 (2003), 187–234.
Löwe, B.: Playing with mixed strategies on infinite sets, Int. J. Game Theory 31 (2002), 137–150.
Löwe, B.: Consequences of Blackwell determinacy, Bull. Iran. Math. Soc. 49 (2002), 43–69.
Löwe, B.: The simulation technique and its applications to infinitary combinatorics under the axiom of blackwell determinacy, Pac. J. Math. 214 (2004), 335–358.
Martin, D. A.: The determinacy of Blackwell games, J. Symb. Log. 63 (1998), 1565–1581.
Martin, D. A., Neeman, I. and Vervoort, M.: The strength of Blackwell determinacy, J. Symb. Log. 68 (2003), 615–636.
Moschovakis, Y. N.: Descriptive Set Theory, Amsterdam 1980 [Studies in Logic and the Foundations of Mathematics 100].
Vervoort, M. R.: Blackwell games, Doctoraalscriptie, Universiteit van Amsterdam, November 1995.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Löwe, B. A Global Wellordering of Norms Defined via Blackwell Games. Order 22, 85–92 (2005). https://doi.org/10.1007/s11083-005-9003-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11083-005-9003-z