A Global Wellordering of Norms Defined via Blackwell Games | Order Skip to main content
Log in

A Global Wellordering of Norms Defined via Blackwell Games

  • Published:
Order Aims and scope Submit manuscript

Abstract

We define a global order of norms using strongly optimal strategies in Blackwell games and prove that it is a prewellordering under the assumption of the Axiom of Blackwell determinacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Addison, J. W. and Moschovakis, Y. N.: Some consequences of the axiom of definable determinateness, Proc. Natl. Acad. Sci. USA 59 (1968), 708–712.

    Article  MATH  MathSciNet  Google Scholar 

  2. Blackwell, D.: Infinite \(G_\delta\) games with imperfect information, Pol. Akad. Nauk – Inst. Mat. – Zastos. Mat. 10 (1969), 99–101.

    MathSciNet  MATH  Google Scholar 

  3. Chalons, C.: A unique integer associated to each map from \(E^\omega\) to \(\omega\), C. R. Acad. Sci., Sér. 1 Math. 331 (2000), 501–506.

    MATH  MathSciNet  Google Scholar 

  4. Duparc, J.: The steel hierarchy of ordinal valued Borel mappings, J. Symb. Log. 68 (2003), 187–234.

    Article  MATH  MathSciNet  Google Scholar 

  5. Löwe, B.: Playing with mixed strategies on infinite sets, Int. J. Game Theory 31 (2002), 137–150.

    Article  MATH  Google Scholar 

  6. Löwe, B.: Consequences of Blackwell determinacy, Bull. Iran. Math. Soc. 49 (2002), 43–69.

    MATH  Google Scholar 

  7. Löwe, B.: The simulation technique and its applications to infinitary combinatorics under the axiom of blackwell determinacy, Pac. J. Math. 214 (2004), 335–358.

    Article  MATH  Google Scholar 

  8. Martin, D. A.: The determinacy of Blackwell games, J. Symb. Log. 63 (1998), 1565–1581.

    Article  MATH  Google Scholar 

  9. Martin, D. A., Neeman, I. and Vervoort, M.: The strength of Blackwell determinacy, J. Symb. Log. 68 (2003), 615–636.

    Article  MATH  MathSciNet  Google Scholar 

  10. Moschovakis, Y. N.: Descriptive Set Theory, Amsterdam 1980 [Studies in Logic and the Foundations of Mathematics 100].

  11. Vervoort, M. R.: Blackwell games, Doctoraalscriptie, Universiteit van Amsterdam, November 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Löwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löwe, B. A Global Wellordering of Norms Defined via Blackwell Games. Order 22, 85–92 (2005). https://doi.org/10.1007/s11083-005-9003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11083-005-9003-z

Mathematics Subject Classifications (2000)

Key Words

Navigation