Numerical method for the generalized nonnegative tensor factorization problem | Numerical Algorithms Skip to main content
Log in

Numerical method for the generalized nonnegative tensor factorization problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, we consider the generalized nonnegative tensor factorization (GNTF) problem, which arises in multiple-tissue gene expression and multi-target tracking. Based on the Karhsh-Kuhn-Tucker conditions, the necessary condition of the local solution for the GNTF problem is given. The proximal alternating nonnegative least squares method is designed to solve it, and its convergence theorem is also derived. Numerical examples show that the new method is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hore, V., Vinuela, A., Buil, A.: Etc., Tensor Decomposition for Multiple-Tissue Gene Expression Experiments, Nature-Genetics, Technical Reports. https://doi.org/10.1038/ng.3624 (2016)

  2. shi, X.C., Ling, H.B., Xing, J.L., Hu, W.M.: Metagenes and molecular pattern discovery using matrix factorization. In: IEEE Conference on Computer Vision and Pattern Recognition Salt Lake City (2013)

  3. Shahnaz, F., Berry, M., Pauca, V., Plemmons, R.: Document clustering using nonnegative matrix factorization. Inf. Process. Manag. 42, 373–386 (2006)

    Article  Google Scholar 

  4. Guillamet, D., Vitria, J.: Non-negative matrix factorization for face recognition. Topics in Artificial Intelligence 61, 336–344 (2002)

    Article  Google Scholar 

  5. Sajda, P., Du, S., Brown, T., Stoyanova, R., Shungu, D., Mao, X., et al.: Nonnegative matrix factorization for rapid recovery of constituent spectra in magnetic resonance chemical shift imaging of the brain. IEEE Trans. Medical Imaging 23, 1453–1465 (2004)

    Article  Google Scholar 

  6. Lee, D.D., Seung, H.S.: Learning the parts of the objects by nonnegative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  7. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126 (1994)

    Article  Google Scholar 

  8. Kim, H., Park, H.: Nonnegative matrix factorization based on alternating nonnegativity constrained least squares and active set method, SIAM. J. Matrix Anal. Appl. 30, 713–C730 (2008)

    Article  MathSciNet  Google Scholar 

  9. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19, 2756–2779 (2007)

    Article  MathSciNet  Google Scholar 

  10. Han, L., Neumann, M., Prasad, U.: Alternating projected Barzilai-Borwein methods for nonnegative matrix factorization. Electr. Trans. Numer. Anal. 36, 54–82 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Gong, P., Zhang, C.: Efficient nonnegative matrix factorization via projected Newton method. Pattern Recognit. 45, 3557–3565 (2012)

    Article  Google Scholar 

  12. Cichocki, A., Zdunek, R.: Etc., Nonnegative Matrix and Tensor Factorizations, Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, Chichester (2009)

    Google Scholar 

  13. Farias, R.C., Comon, P., Redon, R.: Data Mining by Nonnegative Tensor Approximation, IEEE Inter. Workshop on Machine Learning for Signal Processing, Reims, France (2014)

  14. Wang, H.C., Ahuja, N.: A tensor approximation approach to dimensionality reduction. Int. J. Comput. Vis. 76, 217–229 (2006)

    Article  Google Scholar 

  15. Barker, T., Virtanen, T.: Blind separation of audio mixtures through nonnegative tensor factorizationof modulation spectrogram. IEEE Trans. Audio Speech Language Process. 24, 2377–2389 (2016)

    Article  Google Scholar 

  16. Veganzones, M.A., Cohen, J.E., Chanussot, J.: Nonnegative tensor CP decomposition of hyperspectral data. IEEE Trans. Geo. Remote Sensing 54, 2577–2587 (2016)

    Article  Google Scholar 

  17. Cai, X.J., Chen, Y.N., Han, D.R.: Nonnegative tensor decompositions using alternating direction method. Front. Math. China 8, 3–18 (2013)

    Article  MathSciNet  Google Scholar 

  18. Paatero, P.: A weighted nonnegative least squares algorithm for three-way PARAFAC factor analysis. Chemom. Intell. Lab. Syst 38, 223–242 (1997)

    Article  Google Scholar 

  19. Welling, M., Weber, M.: Positive tensor decomposition. Pattern Recognit Lett. 22, 1255–1261 (2013)

    Article  Google Scholar 

  20. Phan, A.H., Cichocki, A.: Seeking an appropriate alternating least squares algorithm for nonnegative tensor factorizations. Neural Comput. Applic. 21, 623–637 (2012)

    Article  Google Scholar 

  21. Zhang, Y., Zhou, G.X., Zhao, Q.B., Cichocki, A., Wang, X.Y.: Fast nonnegative tensor factorization based on accelerated proximal gradient and low rank approximation. Neurocomputing 198, 148–154 (2016)

    Article  Google Scholar 

  22. Birgin, E.G., Martinez, J.M., Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets. J. Optim. 10, 1196–1211 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Grippo, L., Sciandrone, M.: On the convergence of the block nonlinear Gauss-Seidel method under convex constraints. Oper. Res. Lett. 26, 127–136 (2000)

    Article  MathSciNet  Google Scholar 

  24. Gould, S, Zhang, Y: Patchmatchgraph: building a graph of dense patch correspondences for label transfer. Computer Vision-ECCV 2012 7576, 439–452 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Feng Duan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the National Natural Science Foundation of China (No. 11561015; 11761024; 11961012), and the Natural Science Foundation of Guangxi Province (No. 2016GXNSFFA380009; 2017GXNSFBA198082; 2016GXNSFAA380074).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, XF., Li, J., Duan, SQ. et al. Numerical method for the generalized nonnegative tensor factorization problem. Numer Algor 87, 499–510 (2021). https://doi.org/10.1007/s11075-020-00975-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00975-w

Keywords

Mathematics Subject Classification (2010)

Navigation