Preconditioned Krylov subspace and GMRHSS iteration methods for solving the nonsymmetric saddle point problems | Numerical Algorithms Skip to main content
Log in

Preconditioned Krylov subspace and GMRHSS iteration methods for solving the nonsymmetric saddle point problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the present paper, we propose a separate approach as a new strategy to solve the saddle point problem arising from the stochastic Galerkin finite element discretization of Stokes problems. The preconditioner is obtained by replacing the (1,1) and (1,2) blocks in the RHSS preconditioner by others well chosen and the parameter α in (2,2) −block of the RHSS preconditioner by another parameter β. The proposed preconditioner can be used as a preconditioner corresponding to the stationary itearative method or to accelerate the convergence of the generalized minimal residual method (GMRES). The convergence properties of the GMRHSS iteration method are derived. Meanwhile, we analyzed the eigenvalue distribution and the eigenvectors of the preconditioned matrix. Finally, numerical results show the effectiveness of the proposed preconditioner as compared with other preconditioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29 (1951)

    Article  MathSciNet  Google Scholar 

  2. Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900–2932 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bai, Z.-Z., Benzi, M.: Regularized HSS iteration methods for saddle-point. BIT Numer. Math. 57, 287–311 (2017)

    Article  MathSciNet  Google Scholar 

  6. Benzi, M., Wathen, J.A.: Some preconditioning techniques for saddle point problems. Model Order Reduction: Theory. Res. Aspects and Appl. 13, 195–211 (2004)

    MATH  Google Scholar 

  7. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica. 14, 1–137 (2005)

    Article  MathSciNet  Google Scholar 

  8. Benzi, M., Simoncini, V.: On the eigenvalues of a class of saddle point matrices. Numer. Math. 103, 173–196 (2006)

    Article  MathSciNet  Google Scholar 

  9. Bellalij, M., Jbilou, K., Sadok, H.: New convergence results on the global GMRES method for diagonalizable matrices. J. Comput. Appl. Math. 219, 350–358 (2008)

    Article  MathSciNet  Google Scholar 

  10. Benner, P., Saak, J., Stoll, M., Weichelt, H.K.: Efficient solution of large-scale saddle point systems arising in Riccati-based boundary feedback stabilization of incompressible stokes flow. SIAM J. Sci. Comput. 35, S150–S170 (2013)

    Article  MathSciNet  Google Scholar 

  11. Bissuel, A., Allaire, G., Daumas, L., Chalot, F., Mallet, M.: Linear systems with multiple right-hand sides with GMRES, an application to aircraft design. ECCOMAS Congress (2016)

  12. Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence proprieties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)

    Article  MathSciNet  Google Scholar 

  13. Cao, Z.-H.: Augmentation block preconditioners for saddle point-type matrices with singular (1,1) blocks. Linear Algebra Appl. 15, 515–533 (2008)

    Article  MathSciNet  Google Scholar 

  14. Dollar, H.S., Wathen, A.J.: Approximate factorization constraint preconditioners for saddle point matrices. SIAM J. Sci. Comput. 27, 1555–1572 (2006)

    Article  MathSciNet  Google Scholar 

  15. Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  16. Elman, H.C., Ramage, A., Silvester, D.J.: Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33, 2–14 (2007)

    Article  Google Scholar 

  17. Elbouyahyaoui, L., Messaoudi, A., Sadok, H.: Algebraic properties of the block GMRES and block Arnoldi methods. Elect Trans Numer Analysis. 33, 207–220 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Ernst, O.G., Powell, C.E., Silvester, D.J., Ullmann, E.: Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data. SIAM J. Sci. Comput. 31, 1424–1447 (2009)

    Article  MathSciNet  Google Scholar 

  19. Gould, N., Orban, D., Rees, T.: Projected Krylov methods for saddle-point system. SIAM J. Matrix Anal. Appl. 35, 1329–1343 (2014)

    Article  MathSciNet  Google Scholar 

  20. Huang, Z.-G., Wang, G.-L., LG, Xu, Z. , Cui, J.-J.: A generalized variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems. Numer. Algor. 75, 1161–1191 (2017)

    Article  MathSciNet  Google Scholar 

  21. Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for matrix equation. Appl. Numer. Math. 31, 49–43 (1999)

    Article  MathSciNet  Google Scholar 

  22. Jiang, M.-Q., Cao, Y., Yao, L.-Q.: On parametrized block triangular preconditioners for generalized saddle point problems. Appl. Math. Comput. 216, 1777–1789 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972 (2000)

    Article  MathSciNet  Google Scholar 

  24. Pestana, J., Wathen, A.J.: Combination preconditioning of saddle point systems for positive definiteness. Linear Algebra Appl. 20, 785–808 (2012)

    Article  MathSciNet  Google Scholar 

  25. Pestana, J., Wathen, A.J.: On the choice of preconditioner for minimum residual methods for non-Hermitian matrices. J. Comput. Appl. Math. 249, 57–68 (2013)

    Article  MathSciNet  Google Scholar 

  26. Pestana, J., Wathen, A.J.: Natural preconditioning and iterative methods for saddle point systems. SIAM Rev. 57, 71–91 (2015)

    Article  MathSciNet  Google Scholar 

  27. Pestana, J., Wathen, A.J.: A preconditioned MINRES method for nonsymmetric Toeplitz matrices. SIAM J. Matrix Anal. Appl. 36, 273–288 (2015)

    Article  MathSciNet  Google Scholar 

  28. Powell, C.E., Silvester, D.J: Preconditioning steady-state Navier-Stokes equations with random data. SIAM J. Sci. Comput. 34, A2482–A2506 (2012)

    Article  MathSciNet  Google Scholar 

  29. Rozloznik, M., Simoncini, V.: Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24, 368–391 (2002)

    Article  MathSciNet  Google Scholar 

  30. Saad, Y., Schultz, M.: GMRES: A generalised minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

    Article  Google Scholar 

  31. Sadok, H.: Analysis of the convergence of the minimal and the orthogonal residual methods. Numer. Algor. 40, 101–115 (2005)

    Article  MathSciNet  Google Scholar 

  32. Salkuyeh, D.K., Masoudi, M.: A new relaxed HSS preconditioner for saddle point problems. Numer. Algor. 74, 781–795 (2017)

    Article  MathSciNet  Google Scholar 

  33. Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29, 752–773 (2007)

    Article  MathSciNet  Google Scholar 

  34. Stoll, M., Wathen, A.: Combination preconditioning and the Bramble-Pasciak preconditioner. SIAM J. Matrix Anal. Appl. 30, 582–608 (2008)

    Article  MathSciNet  Google Scholar 

  35. Zhang, J.-L., Gu, C.-Q.: A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems. BIT Numer. Math. 56, 587–604 (2016)

    Article  MathSciNet  Google Scholar 

  36. Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71, 479–50 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Laura Dykes for enlightening comments and corrections on an early draft of this manuscript and would like to express their sincere thanks to the referees for their most valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sadok.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badahmane, A., Bentbib, A.H. & Sadok, H. Preconditioned Krylov subspace and GMRHSS iteration methods for solving the nonsymmetric saddle point problems. Numer Algor 84, 1295–1312 (2020). https://doi.org/10.1007/s11075-019-00833-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00833-4

Keywords

Mathematics Subject Classification (2010)

Navigation