Abstract
In the present paper, we propose a separate approach as a new strategy to solve the saddle point problem arising from the stochastic Galerkin finite element discretization of Stokes problems. The preconditioner is obtained by replacing the (1,1) and (1,2) blocks in the RHSS preconditioner by others well chosen and the parameter α in (2,2) −block of the RHSS preconditioner by another parameter β. The proposed preconditioner can be used as a preconditioner corresponding to the stationary itearative method or to accelerate the convergence of the generalized minimal residual method (GMRES). The convergence properties of the GMRHSS iteration method are derived. Meanwhile, we analyzed the eigenvalue distribution and the eigenvectors of the preconditioned matrix. Finally, numerical results show the effectiveness of the proposed preconditioner as compared with other preconditioners.
Similar content being viewed by others
References
Arnoldi, W.E.: The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29 (1951)
Bai, Z.-Z., Golub, G.H., Lu, L.-Z., Yin, J.-F.: Block triangular and skew-Hermitian splitting methods for positive-definite linear systems. SIAM J. Sci. Comput. 26, 844–863 (2004)
Bai, Z.-Z., Golub, G.H., Pan, J.-Y.: Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems. Numer. Math. 98, 1–32 (2004)
Bai, Z.-Z., Wang, Z.-Q.: On parameterized inexact Uzawa methods for generalized saddle point problems. Linear Algebra Appl. 428, 2900–2932 (2008)
Bai, Z.-Z., Benzi, M.: Regularized HSS iteration methods for saddle-point. BIT Numer. Math. 57, 287–311 (2017)
Benzi, M., Wathen, J.A.: Some preconditioning techniques for saddle point problems. Model Order Reduction: Theory. Res. Aspects and Appl. 13, 195–211 (2004)
Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numerica. 14, 1–137 (2005)
Benzi, M., Simoncini, V.: On the eigenvalues of a class of saddle point matrices. Numer. Math. 103, 173–196 (2006)
Bellalij, M., Jbilou, K., Sadok, H.: New convergence results on the global GMRES method for diagonalizable matrices. J. Comput. Appl. Math. 219, 350–358 (2008)
Benner, P., Saak, J., Stoll, M., Weichelt, H.K.: Efficient solution of large-scale saddle point systems arising in Riccati-based boundary feedback stabilization of incompressible stokes flow. SIAM J. Sci. Comput. 35, S150–S170 (2013)
Bissuel, A., Allaire, G., Daumas, L., Chalot, F., Mallet, M.: Linear systems with multiple right-hand sides with GMRES, an application to aircraft design. ECCOMAS Congress (2016)
Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence proprieties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)
Cao, Z.-H.: Augmentation block preconditioners for saddle point-type matrices with singular (1,1) blocks. Linear Algebra Appl. 15, 515–533 (2008)
Dollar, H.S., Wathen, A.J.: Approximate factorization constraint preconditioners for saddle point matrices. SIAM J. Sci. Comput. 27, 1555–1572 (2006)
Elman, H.C., Silvester, D.J., Wathen, A.J.: Finite Elements and Fast Iterative Solvers with Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005)
Elman, H.C., Ramage, A., Silvester, D.J.: Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33, 2–14 (2007)
Elbouyahyaoui, L., Messaoudi, A., Sadok, H.: Algebraic properties of the block GMRES and block Arnoldi methods. Elect Trans Numer Analysis. 33, 207–220 (2009)
Ernst, O.G., Powell, C.E., Silvester, D.J., Ullmann, E.: Efficient solvers for a linear stochastic Galerkin mixed formulation of diffusion problems with random data. SIAM J. Sci. Comput. 31, 1424–1447 (2009)
Gould, N., Orban, D., Rees, T.: Projected Krylov methods for saddle-point system. SIAM J. Matrix Anal. Appl. 35, 1329–1343 (2014)
Huang, Z.-G., Wang, G.-L., LG, Xu, Z. , Cui, J.-J.: A generalized variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems. Numer. Algor. 75, 1161–1191 (2017)
Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for matrix equation. Appl. Numer. Math. 31, 49–43 (1999)
Jiang, M.-Q., Cao, Y., Yao, L.-Q.: On parametrized block triangular preconditioners for generalized saddle point problems. Appl. Math. Comput. 216, 1777–1789 (2010)
Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21, 1969–1972 (2000)
Pestana, J., Wathen, A.J.: Combination preconditioning of saddle point systems for positive definiteness. Linear Algebra Appl. 20, 785–808 (2012)
Pestana, J., Wathen, A.J.: On the choice of preconditioner for minimum residual methods for non-Hermitian matrices. J. Comput. Appl. Math. 249, 57–68 (2013)
Pestana, J., Wathen, A.J.: Natural preconditioning and iterative methods for saddle point systems. SIAM Rev. 57, 71–91 (2015)
Pestana, J., Wathen, A.J.: A preconditioned MINRES method for nonsymmetric Toeplitz matrices. SIAM J. Matrix Anal. Appl. 36, 273–288 (2015)
Powell, C.E., Silvester, D.J: Preconditioning steady-state Navier-Stokes equations with random data. SIAM J. Sci. Comput. 34, A2482–A2506 (2012)
Rozloznik, M., Simoncini, V.: Krylov subspace methods for saddle point problems with indefinite preconditioning. SIAM J. Matrix Anal. Appl. 24, 368–391 (2002)
Saad, Y., Schultz, M.: GMRES: A generalised minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)
Sadok, H.: Analysis of the convergence of the minimal and the orthogonal residual methods. Numer. Algor. 40, 101–115 (2005)
Salkuyeh, D.K., Masoudi, M.: A new relaxed HSS preconditioner for saddle point problems. Numer. Algor. 74, 781–795 (2017)
Schöberl, J., Zulehner, W.: Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29, 752–773 (2007)
Stoll, M., Wathen, A.: Combination preconditioning and the Bramble-Pasciak preconditioner. SIAM J. Matrix Anal. Appl. 30, 582–608 (2008)
Zhang, J.-L., Gu, C.-Q.: A variant of the deteriorated PSS preconditioner for nonsymmetric saddle point problems. BIT Numer. Math. 56, 587–604 (2016)
Zulehner, W.: Analysis of iterative methods for saddle point problems: a unified approach. Math. Comput. 71, 479–50 (2001)
Acknowledgments
The authors would like to thank Laura Dykes for enlightening comments and corrections on an early draft of this manuscript and would like to express their sincere thanks to the referees for their most valuable suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Badahmane, A., Bentbib, A.H. & Sadok, H. Preconditioned Krylov subspace and GMRHSS iteration methods for solving the nonsymmetric saddle point problems. Numer Algor 84, 1295–1312 (2020). https://doi.org/10.1007/s11075-019-00833-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-019-00833-4