Convergence of a hybrid viscosity approximation method for finding zeros of m-accretive operators | Numerical Algorithms Skip to main content
Log in

Convergence of a hybrid viscosity approximation method for finding zeros of m-accretive operators

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

For finding a zero of an m-accretive operator in a real Banach space, we consider an implicit hybrid viscosity approximation method and show that its explicit variant converges strongly to a zero under weaker assumptions than the ones used recently by Ceng et al. (Numer. Func. Anal. Opt. 35(2), 142–165, 2012). First, we examine the case of spaces which are uniformly smooth or reflexive and strictly convex with a uniformly Gâteaux differentiable norm. Afterwards, we improve our convergence results when the space is uniformly convex. Furthermore, we show that the strong convergence of some modified Halpern and Krasnosel’skii–Mann type methods can also be deduced from our results. Finally, a numerical example is also given to illustrate the convergence analysis of the considered method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian - Type Mappings with Applications. Springer, New York (2009)

    MATH  Google Scholar 

  2. Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)

    Article  MathSciNet  Google Scholar 

  3. Browder, E.F., Petryshin, W.V.: Contructions of fixed points of nonlinear mappings. J. Math. Anal. Appl. 20, 197–228 (1967)

    Article  MathSciNet  Google Scholar 

  4. Buong, N., Ha, N.S., Thuy, N.T.T.: A new explicit iteration method for a class of variational inequalities. Numer. Algor. 72(2), 467–481 (2016)

    Article  MathSciNet  Google Scholar 

  5. Buong, N., Phuong, N.T.H., Thuy, N.T.T.: Explicit iteration methods for a class of variational inequalities in Banach spaces. Russian Math. 59(10), 16–22 (2015)

    Article  MathSciNet  Google Scholar 

  6. Buong, N., Quynh, V.X., Thuy, N.T.T.: A steepest-descent Krasnosel’skii-Mann algorithm for a class of variational inequalities in Banach spaces. J. Fixed Point Theory Appl. 18(3), 519–532 (2016)

    Article  MathSciNet  Google Scholar 

  7. Byrne, C.: A unified treatment of some iterative algorithm in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  8. Ceng, L.C., Ansari, Q.H., Schaible, S., Yao, J.C.: Hybrid viscosity approximation methods for zeros of m-accretive operators in Banach spaces. Numer. Func. Anal. Opt. 35(2), 142–165 (2012)

    Article  MathSciNet  Google Scholar 

  9. Ceng, L.C., Ansari, Q.H., Yao, J.C.: Mann-type steepest-descent and modified hybrid steepest descent methods for variational inequalities in Banach spaces. Numer. Func. Anal. Opt. 29, 987–1033 (2008)

    Article  MathSciNet  Google Scholar 

  10. Chen, R.D., Liu, Y.J., Shen, X.L.: Iterative approximation of a zero of accretive operator in Banach space. Nonlinear Anal. 71, 346–350 (2009)

    Article  MathSciNet  Google Scholar 

  11. Chen, R.D., Zhu, Z.H.: Viscosity approximation method for accretive operator in Banach space. Nonlinear Anal. 69, 1356–1363 (2008)

    Article  MathSciNet  Google Scholar 

  12. Cui, H., Su, M.: On sufficient conditions ensuring the norm convergence of an iterative sequence to zeros of accretive operators. Appl. Math. Comput. 258, 67–71 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Goebel, K., Reich, S.: Uniform Convexity, Hyperpolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  14. Halpern, B.: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957–961 (1967)

    Article  MathSciNet  Google Scholar 

  15. Ishikawa, S.: Fixed points by new iteration method. Proc. Amer. Math. Soc. 44, 147–150 (1974)

    Article  MathSciNet  Google Scholar 

  16. Jung, J.S.: Convergence of composite iterative methods for finding zeros of accretive operators. Nonlinear Anal. 71, 1736–1746 (2009)

    Article  MathSciNet  Google Scholar 

  17. Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Nauka, Moscow (1977). English transl. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  18. Kim, T.H., Xu, H.K.: Strong convergence of modified Mann iterations. Nonlinear Anal. 61, 51–60 (2005)

    Article  MathSciNet  Google Scholar 

  19. Krasnoselskii, M.A.: Two remarks on the method of successive approximations. Uspekhi Math. Nauk. 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  20. Maingé, P.E.: Viscosity methods for zeroes of accretive operators. J. Approx. Theory. 140, 127–140 (2006)

    Article  MathSciNet  Google Scholar 

  21. Maingé, P.E.: The viscosity approximation process for quasi - nonexpansive mappings. Comput. Math. Appl. 59, 74–79 (2010)

    Article  MathSciNet  Google Scholar 

  22. Mann, W.R.: Mean value methods in iteration. Proc. Amer. Math. Soc. 4, 506–510 (1953)

    Article  MathSciNet  Google Scholar 

  23. Marino, G., Xu, H.K.: Convergence of generalized proximal point algorithms. Commun. Pure Appl. Anal. 3(4), 791–808 (2004)

    Article  MathSciNet  Google Scholar 

  24. Moudafi, A.: Viscosity approximation methods for fixed-point problems. J. Math. Anal. Appl. 241, 46–55 (2000)

    Article  MathSciNet  Google Scholar 

  25. Qin, X., Cho, Y.J., Kang, J.I., Kang, S.M.: Strong convergence theorems for an infinite family of nonexpansive mappings in Banach spaces. J. Comput. Appl. Math. 230, 121–127 (2009)

    Article  MathSciNet  Google Scholar 

  26. Qin, X., Su, Y.: Approximation of a zero point of accretive operator in Banach spaces. J. Math. Anal. Appl. 329, 415–424 (2007)

    Article  MathSciNet  Google Scholar 

  27. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)

    Article  MathSciNet  Google Scholar 

  28. Reich, S.: Strong convergence theorems for resolvants of accretive operators in Banach spaces. J. Math. Anal. Appl. 75, 287–292 (1980)

    Article  MathSciNet  Google Scholar 

  29. Saejung, S.: Halpern’s iteration in Banach spaces. Nonlinear Anal. 73, 3431–3439 (2010)

    Article  MathSciNet  Google Scholar 

  30. Sahu, D.R., Yao, J.C.: The prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces. J. Global Optim. 51, 641–655 (2011)

    Article  MathSciNet  Google Scholar 

  31. Shehu, Y.: Modified Krasnosel’skii-Mann iterative algorithm for nonexpansive mappings in Banach spaces. Arab. J. Math. 2, 209–219 (2013)

    Article  MathSciNet  Google Scholar 

  32. Song, Y.: New iterative algorithms for zeros of accretive operators. J. Korean Math. Soc. 46, 83–97 (2009)

    Article  MathSciNet  Google Scholar 

  33. Suzuki, T.: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. 2005, 103–123 (2005)

    Article  MathSciNet  Google Scholar 

  34. Suzuki, T.: A sufficient and necessary condition for Halpern-type strong convergence to fixed points of nonexpansive mappings. Proc. Amer. Math. Soc. 135, 99–106 (2007)

    Article  MathSciNet  Google Scholar 

  35. Takahashi, W., Ueda, Y.: On Reich’s strong convergence theorem for resolvents of accretive operators. J. Math. Anal. Appl. 104, 546–553 (1984)

    Article  MathSciNet  Google Scholar 

  36. Takahashi, W.: Nonlinear Functional Analysis - Fixed Point Theory and its Applications. Yokohama Publishers Inc., Yokohama (2000)

    MATH  Google Scholar 

  37. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003)

    Article  MathSciNet  Google Scholar 

  38. Xu, H.K.: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279–291 (2004)

    Article  MathSciNet  Google Scholar 

  39. Xu, H.K.: Strong convergence of an iterative method for nonexpansive and accretive operators. J. Math. Anal. Appl. 314, 631–643 (2006)

    Article  MathSciNet  Google Scholar 

  40. Yao, Y., Zhou, H., Liou, Y.C.: Strong convergence of a modified Krasnosel’skii - Mann iterative algorithm for nonexpansive mapping. J. Appl. Math. Comput. 29, 383–389 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Fund of Vietnam Ministry of Education and Training (No. B2018-TNA-62). The research of the third author is supported by the Namur Institute for Complex Systems (naXys, University of Namur, Belgium).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Strodiot.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thuy, N.T.T., Hieu, P.T. & Strodiot, J.J. Convergence of a hybrid viscosity approximation method for finding zeros of m-accretive operators. Numer Algor 83, 1591–1612 (2020). https://doi.org/10.1007/s11075-019-00740-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00740-8

Keywords

Mathematics Subject Classification (2010)