Error bounds for linear complementarity problems of S-QN matrices | Numerical Algorithms Skip to main content
Log in

Error bounds for linear complementarity problems of S-QN matrices

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Linear complementarity problem (LCP) presents many nice properties when the associated matrix belongs to some special matrix classes, especially H-matrices. In this paper, we put forward a new subclass of H-matrices, called S-QN matrices, which is the proper generalization of the QN matrices. We have proved that for a given S-QN matrix A, there exists a diagonal scaling matrix W such that AW is a QN matrix. Then, we present two kinds of error bounds for LCP of S-QN matrices. The Error Bound I generalizes the error bound for LCP of QN matrices. The Error Bound II overcomes the limitation that the Error Bound I cannot be used. Numerical examples illustrate that the Error Bound I is better than other previous bounds for H-matrices in some cases. Moreover, in some special cases, the Error Bound II can improve considerably the Error Bound I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berman, A., Plemmons, R.J.: Nonnegative Matrix in the Mathematical Science. Academic Press, New York (1979)

    MATH  Google Scholar 

  2. Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992)

    MATH  Google Scholar 

  3. Schäfer, U.: A linear complementarity problem with a P-Matrix[J]. Siam Review 46(2), 189–201 (2004)

    Article  MathSciNet  Google Scholar 

  4. Feng, L., Linetsky, V., Morales, J.L., et al.: On the solution of complementarity problems arising in American options pricing[J]. Optim. Methods Softw. 26(4–5), 813–825 (2011)

    Article  MathSciNet  Google Scholar 

  5. Chen, X., Xiang, S.: Computation of error bounds for p-matrix linear complementarity problems[J]. Math. Program. 106(3), 513–525 (2006)

    Article  MathSciNet  Google Scholar 

  6. García-Esnaola, M., Peña, J.M.: A comparison of error bounds for linear complementarity problems of H-matrices. Linear Algebra Appl. 433, 956–964 (2010)

    Article  MathSciNet  Google Scholar 

  7. Kolotilina, L.Y.: Bounds for the inverses of generalized Nekrasov matrices[J]. J. Math. Sci. 207(5), 786–794 (2015)

    Article  MathSciNet  Google Scholar 

  8. Dai, P.F., Li, C.J., Li, Y.T., Zhang, C.Y.: Error bounds for linear complementarity problems of QN-matrices. Calcolo 53, 647–657 (2016)

    Article  MathSciNet  Google Scholar 

  9. Gao, L., Wang, Y., Li, C.: New error bounds for the linear complementarity problem of QN-matrices[J]. Numer. Algorithms, pp. 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  10. Szulc, T., Cvetković, L., Nedović, M.: Scaling technique for Partition-Nekrasov matrices[J]. Appl. Math. Comput. 271(C), 201–208 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Li, C.Q., Li, Y.T.: Note on error bounds for linear complementarity problems for B-matrices[J]. Appl. Math. Lett. 57, 108–113 (2016)

    Article  MathSciNet  Google Scholar 

  12. Li, C.Q., Dai, P.F., Li, Y.T.: New error bounds for linear complementarity problems of Nekrasov matrices and B-Nekrasov matrices[J]. Numer. Algorithms, pp. 1–13 (2016)

  13. Cvetković, L., Kostić, V., Rauski, S.: A new subclass of H-matrices.[J]. Appl. Math. Comput. 208(1), 206–210 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Cvetković, L., Kostić, V., Varga, R.S.: A new gersgorin-type eigenvalue inclusion set *[J]. Electronic Transactions on Numerical Analysis Etna 302(5906), 73–80 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Fiedler, M., Ptak, V.: Generalized norms of matrices and the location of the Spectrum[J]. Czechoslov. Math. J. 12(87), 558–571 (1962)

    MathSciNet  MATH  Google Scholar 

  16. Dai, P., Li, Y.T., Lu, C.J.: Erratum to: error bounds for linear complementarity problems for SB-matrices[J]. Numer. Algorithms 61(1), 187–187 (2012)

    Article  MathSciNet  Google Scholar 

  17. García-Esnaola, M., Peña, J.M.: Error bounds for linear complementarity problems of Nekrasov matrices. Numer. Algorithms 67, 655–667 (2014)

    Article  MathSciNet  Google Scholar 

  18. Dehghan, M., Hajarian, M.: Convergence of SSOR methods for linear complementarity problems[J]. Oper. Res. Lett. 37(3), 219–223 (2009)

    Article  MathSciNet  Google Scholar 

  19. Li, Y., Dai, P.: Generalized AOR methods for linear complementarity problem[J]. Appl. Math. Comput. 188(1), 7–18 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Hadjidimos, A., Tzoumas, M.: The solution of the linear complementarity problem by the matrix analogue of the accelerated overrelaxation iterative method[J]. Numer. Algorithms, pp. 1–20 (2016)

  21. Varah, J.M.: A lower bound for the smallest singular value of a matrix[J]. Linear Algebra Appl. 11(1), 3–5 (1975)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the anonymous referees for their valuable comments to improve the paper.

Funding

The work was supported by the National Natural Science Foundation of China (11671318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, G. Error bounds for linear complementarity problems of S-QN matrices. Numer Algor 83, 935–955 (2020). https://doi.org/10.1007/s11075-019-00710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00710-0

Keywords

Navigation