A new algorithm for solving the split common null point problem in Hilbert spaces | Numerical Algorithms Skip to main content
Log in

A new algorithm for solving the split common null point problem in Hilbert spaces

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We study the split common null point problem in two Hilbert spaces. In order to solve this problem, we propose a new algorithm and establish a strong convergence theorem for it. Our scheme combines the hybrid projection method with the proximal point algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-type Mappings with Applications. Springer, New York (2009)

    MATH  Google Scholar 

  2. Barbu, V., Precupanu, T. h.: Convexity and Optimization in Banach Spaces. Editura Academiei R. S. R., Bucharest (1978)

    MATH  Google Scholar 

  3. Boikanyo, O.A.: A strongly convergent algorithm for the split common fixed point problem. Appl. Math. Comput. 265, 844–853 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Problems 18, 441–453 (2002)

    Article  MathSciNet  Google Scholar 

  5. Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Problems 18, 103–120 (2004)

    Article  MathSciNet  Google Scholar 

  6. Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Censor, Y., Elfving, T.: A multi projection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221–239 (1994)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its application. Inverse Problems 21, 2071–2084 (2005)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problems. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  10. Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Cui, H., Su, M.: On sufficient conditions ensuring the norm convergence of an iterative sequence to zeros of accretive operators. Appl. Math. Comp. 258, 67–71 (2015)

    Article  MathSciNet  Google Scholar 

  12. Cui, H., Wang, F.: Iterative methods for the split common fixed point problem in Hilbert spaces. Fixed Point Theory Appl. 2014, 1–8 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 99, 299–306 (2017)

    Article  MathSciNet  Google Scholar 

  14. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory, Cambridge Stud. Adv Math., vol. 28. Cambridge Univ. Press, Cambridge (1990)

    Book  Google Scholar 

  15. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  16. López, G., Martín-Márquez, V., Wang, F., Xu, H. -K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probems 28, 085004 (2012)

    Article  MathSciNet  Google Scholar 

  17. Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Problems 055007, 26 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33, 209–216 (1970)

    Article  MathSciNet  Google Scholar 

  20. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  Google Scholar 

  21. Schopfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Problems 055008, 24 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Shehu, Y., Iyiola, O.S., Enyi, C.D.: An iterative algorithm for solving split feasibility problems and fixed point problems in Banach spaces. Numer. Algorithms 72, 835–864 (2016)

    Article  MathSciNet  Google Scholar 

  23. Takahashi, S., Takahashi, W., Toyoda, M.: Strong convergence theorems for maximal monotone operators with nonlinear mappings in Hilbert spaces. J. Optim. Theory Appl. 147, 27–41 (2010)

    Article  MathSciNet  Google Scholar 

  24. Takahashi, W.: The split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. 15, 1349–1355 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 16, 1449–1459 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65, 281–287 (2016)

    Article  MathSciNet  Google Scholar 

  27. Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. 104, 357–365 (2015)

    Article  MathSciNet  Google Scholar 

  28. Wang, F.: A new algorithm for solving the multiple-sets split feasibility problem in Banach spaces. Numer. Funct. Anal. Optim. 35, 99–110 (2014)

    Article  MathSciNet  Google Scholar 

  29. Wang, F.: A new iterative method for the split common fixed point problem in Hilbert spaces. Optimization 66, 407–415 (2017)

    Article  MathSciNet  Google Scholar 

  30. Wang, F., Xu, H.K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)

    Article  MathSciNet  Google Scholar 

  31. Xu, H.K.: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Problems 22, 2021–2034 (2006)

    Article  MathSciNet  Google Scholar 

  32. Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Problems 105018, 26 (2010)

    MathSciNet  Google Scholar 

  33. Yang, Q.: The relaxed CQ algorithm for solving the split feasibility problem. Inverse Problems 20, 1261–1266 (2004)

    Article  MathSciNet  Google Scholar 

  34. Yosida, K.: Functional Analysis. Springer, Berlin (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by the Israel Science Foundation (Grant 820/17), by the Fund for the Promotion of Research at the Technion and by the Technion General Research Fund. The second author was supported by the Science and Technology Fund of the Vietnam Ministry of Education and Training (B 2019). Both authors are grateful to the editors and the referees for their useful comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simeon Reich.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reich, S., Tuyen, T.M. A new algorithm for solving the split common null point problem in Hilbert spaces. Numer Algor 83, 789–805 (2020). https://doi.org/10.1007/s11075-019-00703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00703-z

Keywords

Mathematics Subject Classification (2010)

Navigation