A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations | Numerical Algorithms Skip to main content
Log in

A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

In this paper, a class of nonlinear Riesz space-fractional Schrödinger equations are considered. Based on the standard Galerkin finite element method in space and a relaxation-type difference method in time, a fully discrete system is constructed. This scheme avoids solving the nonlinear systems and preserves the mass and energy very well. By the Brouwer fixed-pointed theorem, the unique solvability of the discrete system is proved. Moreover, we focus on a rigorous analysis of the optimal convergence properties for the fully discrete system. Finally, some numerical examples are given to validate the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akrivis, G.D.: Finite difference discretization of the cubic Schrödinger equation. IMA J. Numer. Anal. 13(1), 115–124 (1993)

    MathSciNet  MATH  Google Scholar 

  2. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrodinger̈ equation. Numer. Math. 59(1), 31–53 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Besse, C.: A relaxation scheme for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 42(3), 934–952 (2004)

    MathSciNet  MATH  Google Scholar 

  4. Bhrawy, A., Abdelkawy, M.: A fully spectral collocation approximation for multi-dimensional fractional Schrödinger equations. J. Comput. Phys. 294, 462–483 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bhrawy, A., Zaky, M.: An improved collocation method for multi-dimensional space–time variable-order fractional Schrödinger equations. Appl. Numer. Math. 111, 197–218 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Bhrawy, A.H., Alzaidy, J.F., Abdelkawy, M.A., Biswas, A.: Jacobi spectral collocation approximation for multi-dimensional time-fractional Schrödinger equations. Nonlinear Dynam. 84(3), 1553–1567 (2016)

    MathSciNet  Google Scholar 

  7. Bu, W., Tang, Y., Wu, Y., Yang, J.: Finite difference/finite element method for two-dimensional space and time fractional Bloch–Torrey equations. J. Comput. Phys. 293, 264–279 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Bu, W., Tang, Y., Yang, J.: Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 276, 26–38 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148(2), 397–415 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Cheng, X., Duan, J., Li, D.: A novel compact ADI scheme for two-dimensional Riesz space fractional nonlinear reaction–diffusion equations. Appl. Math. Comput. 346, 452–464 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Delfour, M., Fortin, M., Payr, G.: Finite-difference solutions of a non-linear Schrödinger equation. J. Comput. Phys. 44(2), 277–288 (1981)

    MathSciNet  MATH  Google Scholar 

  12. Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47(1), 204–226 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Duo, S., Zhang, Y.: Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation. Comput. Math. Appl. 71(11), 2257–2271 (2016)

    MathSciNet  Google Scholar 

  14. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 22(3), 558–576 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Fei, Z., Perez-Garcia, V.M., Vazquez, L.: Numerical simulation of nonlinear Schrödinger systems: a new conservative scheme. Appl. Math. Comput. 71(2), 165–177 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Gu, X.M., Huang, T.Z., Li, H.B., Li, L., Luo, W.H.: On k-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations. Appl. Math. Lett. 42, 53–58 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Guo, B., Han, Y., Xin, J.: Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 204(1), 468–477 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Guo, B., Huo, Z.: Global well-posedness for the fractional nonlinear Schrödinger equation. Comm. Partial Diff. Equ. 36(2), 247–255 (2010)

    MATH  Google Scholar 

  19. Guo, X., Xu, M.: Some physical applications of fractional Schrödinger equation. J. Math. Phys. 47(8), 082–104 (2006)

    Google Scholar 

  20. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    MathSciNet  MATH  Google Scholar 

  21. Jin, B., Lazarov, R., Zhou, Z.: Error estimates for a semidiscrete finite element method for fractional order parabolic equations. SIAM J. Numer. Anal. 51 (1), 445–466 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Kirkpatrick, K., Lenzmann, E., Staffilani, G.: On the continuum limit for discrete NLS with long-range lattice interactions. Comm. Math. Phys. 317(3), 563–591 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Laskin, N.: Fractional quantum mechanics. Phys. Rev. E 62(3), 3135 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268(4), 298–305 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66(5), 056–108 (2002)

    MathSciNet  Google Scholar 

  26. Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62 (3), 855–875 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Li, M., Huang, C., Wang, N.: Galerkin finite element method for nonlinear fractional Ginzburg-Landau equation. Appl. Numer. Math. 118, 131–149 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Li, M., Huang, C., Wang, P.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74, 499–525 (2016)

    MATH  Google Scholar 

  29. Li, M., Huang, C., Zhang, Z.: Unconditional error analysis of Galerkin FEMs for nonlinear fractional Schrödinger equation. Appl. Anal. 97(2), 295–315 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Li, M., Zhao, Y.L.: A fast energy conserving finite element method for the nonlinear fractional Schrödinger equation with wave operator. Appl. Math. Comput. 338, 758–773 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Li, S., Vu-Quoc, L.: Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32(6), 1839–1875 (1995)

    MathSciNet  MATH  Google Scholar 

  32. Liu, Y., Du, Y., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time–fractional fourth–order reaction–diffusion problem. Comput. Math. Appl. 70(4), 573–591 (2015)

    MathSciNet  Google Scholar 

  33. Liu, Y., Du, Y., Li, H., Li, J., He, S.: A two-grid mixed finite element method for a nonlinear fourth-order reaction–diffusion problem with time-fractional derivative. Comput. Math. Appl. 70(10), 2474–2492 (2015)

    MathSciNet  Google Scholar 

  34. Longhi, S.: Fractional Schrödinger equation in optics. Opt. Lett. 40(6), 1117–1120 (2015)

    Google Scholar 

  35. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339–3352 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Roop, J.P.: Variational Solution of the Fractional Advection Dispersion Equation. Ph.D. thesis, Clemson University, South Carolina (2004)

  37. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives: Theory and Applications, 1st edn. Gordon and Breach Science Publishers, London (1993)

    MATH  Google Scholar 

  38. Secchi, S.: Ground state solutions for nonlinear fractional Schrodinger̈ equations in RN. arXiv:1208.2545. https://doi.org/10.1063/1.4793990 (2012)

    MathSciNet  MATH  Google Scholar 

  39. Secchi, S., Squassina, M.: Soliton dynamics for fractional Schrödinger equations. Appl. Anal. 93(8), 1702–1729 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Stickler, B.: Potential condensed-matter realization of space-fractional quantum mechanics: the one-dimensional Levý crystal. Phys. Rev. E 88(1), 012120 (2013)

    Google Scholar 

  41. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    MATH  Google Scholar 

  42. Wang, D., Xiao, A., Yang, W.: Crank–Nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 242, 670–681 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Wang, D., Xiao, A., Yang, W.: A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations. J. Comput. Phys. 272, 644–655 (2014)

    MathSciNet  MATH  Google Scholar 

  44. Wang, D., Xiao, A., Yang, W.: Maximum-norm error analysis of a difference scheme for the space fractional CNLS. Appl. Math. Comput. 257, 241–251 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Wang, J.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60(2), 390–407 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Wang, P., Huang, C.: A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation. Numer. Algorithms 69(3), 625–641 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Wang, P., Huang, C.: An energy conservative difference scheme for the nonlinear fractional Schrödinger equations. J. Comput. Phys. 293, 238–251 (2015)

    MathSciNet  MATH  Google Scholar 

  48. Wang, P., Huang, C., Zhao, L.: Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation. J. Comput. Appl. Math. 306(C), 231–247 (2016)

    MathSciNet  MATH  Google Scholar 

  49. Wei, L., He, Y., Zhang, X., Wang, S.: Analysis of an implicit fully discrete local discontinuous Galerkin method for the time-fractional Schrödinger equation. Finite Elem. Anal. Des. 59, 28–34 (2012)

    MathSciNet  Google Scholar 

  50. Wei, L., Zhang, X., Kumar, S., Yildirim, A.: A numerical study based on an implicit fully discrete local discontinuous Galerkin method for the time-fractional coupled Schrödinger system. Comput. Math. Appl. 64(8), 2603–2615 (2012)

    MathSciNet  MATH  Google Scholar 

  51. Weideman, J., Herbst, B.: Split-step methods for the solution of the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 23(3), 485–507 (1986)

    MathSciNet  MATH  Google Scholar 

  52. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34 (1), 200–218 (2010)

    MathSciNet  MATH  Google Scholar 

  53. Yang, Z.: A class of linearized energy-conserved finite difference schemes for nonlinear space-fractional Schrödinger equations. Int. J. Comput. Math. 93(3), 609–626 (2016)

    MathSciNet  MATH  Google Scholar 

  54. Zhang, H., Liu, F., Anh, V.: Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl. Math. Comput. 217 (6), 2534–2545 (2010)

    MathSciNet  MATH  Google Scholar 

  55. Zhao, X., Sun, Z.z., Hao, Z.p.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 36(6), A2865–A2886 (2014)

    MATH  Google Scholar 

  56. Zhao, Z., Li, C.: Fractional difference/finite element approximations for the time–space fractional telegraph equation. Appl. Math. Comput. 219(6), 2975–2988 (2012)

    MathSciNet  MATH  Google Scholar 

  57. Bu, W., Shu, S., Yue, X., Xiao, A., Zeng, W.: Space-time finite element method for the multi-term time-space fractional diffusion equation on a two-dimensional domain. Comput. Math. Appl. https://doi.org/10.1016/j.camwa.2018.11.033 (2018)

    MathSciNet  Google Scholar 

Download references

Funding

This work was supported by NSF of China (No. 11801527, 11771163) and China Postdoctoral Science Foundation Funded Project (No. 2018M632791).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengming Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I: the two implicit FEMs

The first one is the implicit midpoint finite element method (IMFEM), which is to find \(u_{h}^{n + 1}\in S_{h}\), such that

$$ i(\delta_{t} u_{h}^{n+\frac{1}{2}}, v_{h})-B(\bar{u}_{h}^{n+\frac{1}{2}}, v_{h})+\lambda(|\bar{u}_{h}^{n+\frac{1}{2}}|^{2}\bar{u}_{h}^{n+\frac{1}{2}}, v_{h})= 0, ~~v_{h}\in S_{h}, $$
(1)

with the initial condition \({u_{h}^{0}}=I_{h}u_{0}\). To embark the numerical experiments, we develop following efficient iterative scheme as follows:

$$ (\mathcal{H}^{(s + 1)}. v_{h})-({u_{h}^{n}}, v_{h})+i\frac{\tau}{2}B(\mathcal{H}^{(s + 1)}, v_{h})-i\frac{\lambda\tau}{2}(|\mathcal{H}^{(s)}|^{2}\mathcal{H}^{(s)}, v_{h}) = 0. $$
(2)

The initial iterative is selected as, for n ≥ 1,

$$\mathcal{H}^{(0)}=\frac{3{u_{h}^{n}}-u_{h}^{n-1}}{2}, $$

and for n = 0, we find \(\mathcal {H}^{(0)}\) by the following:

$$(\mathcal{H}^{(0)}, v_{h})-({u_{h}^{0}}, v_{h})+i\frac{\tau}{2}B({u_{h}^{0}}, v_{h})-i\frac{\lambda\tau}{2}(|{u_{h}^{0}}|^{2}{u_{h}^{0}}, v_{h})= 0. $$

Once we obtain \(\mathcal {H}^{(s + 1)}\) by (111), then \(\bar {u}_{h}^{n + 1/2}\) is reached if \(\mathcal {H}^{(s + 1)}\) converges. In the end, we can get \(u_{h}^{n + 1}\) by \(u_{h}^{n + 1}= 2\bar {u}_{h}^{n + 1/2}-{u_{h}^{n}}\).

The second one is the Crank-Nicolson finite element method (CNFEM), which is to find \(u_{h}^{n + 1}\in S_{h}\), such that

$$ i(\delta_{t}u_{h}^{n+\frac{1}{2}}, v_{h})-B(\bar{u}_{h}^{n+\frac{1}{2}},v_{h})+\frac{\lambda}{2}\left( \left( |u_{h}^{n + 1}|^{2}+|{u_{h}^{n}}|^{2}\right)\bar{u}_{h}^{n+\frac{1}{2}}, v_{h}\right)= 0,~~\forall v_{h}\in S_{h}, $$
(3)

with the initial condition \({u_{h}^{0}}=I_{h}u_{0}\). We propose an iteration procedure as follows:

$$ i\left( \frac{u_{h}^{n + 1(s + 1)}-{u_{h}^{n}}}{\tau}, v_{h}\right)-\frac{1}{2}B(\bar{u}_{h}^{n + 1(s + 1)}+{u_{h}^{n}}, v_{h})+(H^{n + 1(s)}, v_{h})= 0, $$
(4)

with the boundary condition

$$ u_{h}^{n + 1(s + 1)}= 0,~~on~\partial{\Omega}, $$
(5)

where

$$ H^{n + 1(s)}=\frac{\lambda}{4}(|u_{h}^{n + 1(s)}|^{2}+|{u_{h}^{n}}|^{2})(u_{h}^{n + 1(s)}+{u_{h}^{n}}), $$
(6)

and

$$ u_{h}^{n + 1(0)}=\left\{ \begin{array}{lll} &{u_{h}^{n}},&n = 0,\\ &2{u_{h}^{n}}-u_{h}^{n-1},~~&n\geq 1. \end{array} \right. $$
(7)

Appendix II: the proof of Lemma 8

First, we introduce the following system as follows:

$$ \left\{ \begin{array}{lll} & -\frac{\partial^{\alpha} \omega}{\partial |x|^{\alpha}}=f, \hspace{0.5cm} f\in L^{2}({\Omega}),\\ & \omega(a)=\omega(b)= 0 . \end{array} \right. $$
(8)

Obviously, it exists a unique solution \(u\in H_{0}^{\frac {\alpha }{2}}\cap H^{\alpha }({\Omega })\), such that

$$\begin{array}{@{}rcl@{}} && \|\omega\|_{\alpha}\leq C\|f\|, \quad \alpha\neq \frac{3}{2}; \end{array} $$
(9)
$$\begin{array}{@{}rcl@{}} && \|\omega\|_{\alpha-\sigma}\leq C\|f\|, \quad \alpha\neq \frac{3}{2}, \quad 0<\sigma<\frac{1}{2}. \end{array} $$
(10)

Let \(u\in H_{0}^{\frac {\alpha }{2}}\cap H^{\eta }({\Omega })\), α/2 < ηr + 1. Then, by (17) and (57), we obtain the following:

$$ \|u-P_{h}u\|_{\frac{\alpha}{2}}^{2}\!\leq\! CB(u-P_{h}u, u-P_{h}u) = CB(u-P_{h}u, u-I_{h}u)\!\leq\! C\|u-P_{h}u\|_{\frac{\alpha}{2}}\|u-I_{h}u\|_{\frac{\alpha}{2}}. $$
(11)

Therefore, we have as follows:

$$ \|u-P_{h}u\|_{\frac{\alpha}{2}}\leq C\|u-I_{h}u\|_{\frac{\alpha}{2}}. $$
(12)

Thanks to the approximation property [41], we derive with the following:

$$ \|u-P_{h}u\|_{\frac{\alpha}{2}}\leq Ch^{\eta-\frac{\alpha}{2}}\|u\|_{\eta}. $$
(13)

For α≠ 3/2, it follows from (17) and (117) that

$$\begin{array}{@{}rcl@{}} (u-P_{h}u, f) &=& B(u-P_{h}u, \omega) \\ &=& B(u-P_{h}u, \omega-I_{h}\omega) \\ & \leq& C\|u-P_{h}u\|_{\frac{\alpha}{2}}\|\omega-I_{h}\omega\|_{\frac{\alpha}{2}} \\ &\leq & Ch^{\eta}\|u\|_{\eta}\|\omega\|_{\alpha}\leq Ch^{\eta}\|u\|_{\eta}\|f\|_{0}. \end{array} $$
(14)

Thus, we have as follows:

$$ \|u-P_{h}u\|\leq Ch^{\eta}\|u\|_{\eta}. $$
(15)

Similarly, for α = 3/2, it follows that

$$ \|u-P_{h}u\|\leq Ch^{\eta-\sigma}\|u\|_{\eta}, \quad 0<\sigma<\frac{1}{2}. $$
(16)

Therefore, we have completed the proof of Lemma 8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Huang, C. & Ming, W. A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations. Numer Algor 83, 99–124 (2020). https://doi.org/10.1007/s11075-019-00672-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-019-00672-3

Keywords

Navigation